These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 6363900)

  • 21. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb.
    Fukuta S; Magnani JL; Twiddy EM; Holmes RK; Ginsburg V
    Infect Immun; 1988 Jul; 56(7):1748-53. PubMed ID: 3290106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of diphtheria-toxin-resistant mutants lacking receptor function or containing nonribosylatable elongation factor 2.
    Kohno K; Uchida T; Mekada E; Okada Y
    Somat Cell Mol Genet; 1985 Sep; 11(5):421-31. PubMed ID: 3862242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in identifying the functions of gangliosides.
    Fishman PH
    Chem Phys Lipids; 1986 Dec; 42(1-3):137-51. PubMed ID: 3030576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli to GM1, derivatives of GM1, and nonlipid oligosaccharide polyvalent ligands.
    Schengrund CL; Ringler NJ
    J Biol Chem; 1989 Aug; 264(22):13233-7. PubMed ID: 2666416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How bacterial protein toxins enter cells; the role of partial unfolding in membrane translocation.
    London E
    Mol Microbiol; 1992 Nov; 6(22):3277-82. PubMed ID: 1484483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Entry mechanisms of protein toxins and picornaviruses.
    Olsnes S; Sandvig K; Madshus IH; Sundan A
    Biochem Soc Symp; 1985; 50():171-91. PubMed ID: 3915869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin.
    Merritt EA; Zhang Z; Pickens JC; Ahn M; Hol WG; Fan E
    J Am Chem Soc; 2002 Jul; 124(30):8818-24. PubMed ID: 12137534
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin.
    Holmgren J; Fredman P; Lindblad M; Svennerholm AM; Svennerholm L
    Infect Immun; 1982 Nov; 38(2):424-33. PubMed ID: 7141703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diphtheria toxin: membrane interaction and membrane translocation.
    London E
    Biochim Biophys Acta; 1992 Mar; 1113(1):25-51. PubMed ID: 1550860
    [No Abstract]   [Full Text] [Related]  

  • 30. [Biochemical properties of Escherichia, Vibrio cholerae, and Shigella toxins].
    Iarovaia LM
    Zh Mikrobiol Epidemiol Immunobiol; 1981 Apr; (4):16-24. PubMed ID: 7023142
    [No Abstract]   [Full Text] [Related]  

  • 31. ADP-ribosylating microbial toxins.
    Foster JW; Kinney DM
    Crit Rev Microbiol; 1985; 11(4):273-98. PubMed ID: 2859967
    [No Abstract]   [Full Text] [Related]  

  • 32. Entry of diphtheria toxin into cells: possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins.
    Kaneda Y; Uchida T; Mekada E; Nakanishi M; Okada Y
    J Cell Biol; 1984 Feb; 98(2):466-72. PubMed ID: 6693491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diphtheria toxin and Pseudomonas aeruginosa exotoxin A: active-site structure and enzymic mechanism.
    Wilson BA; Collier RJ
    Curr Top Microbiol Immunol; 1992; 175():27-41. PubMed ID: 1628498
    [No Abstract]   [Full Text] [Related]  

  • 34. Membrane traffic and the cellular uptake of cholera toxin.
    Lencer WI; Hirst TR; Holmes RK
    Biochim Biophys Acta; 1999 Jul; 1450(3):177-90. PubMed ID: 10395933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AB5 ADP-ribosylating toxins: comparative anatomy and physiology.
    Burnette WN
    Structure; 1994 Mar; 2(3):151-8. PubMed ID: 8069630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diphtheria toxin-receptor interaction: a polyphosphate-insensitive diphtheria toxin-binding domain.
    Eidels L; Ross LL; Hart DA
    Biochem Biophys Res Commun; 1982 Nov; 109(2):493-9. PubMed ID: 7181930
    [No Abstract]   [Full Text] [Related]  

  • 37. Structural basis for differential receptor binding of cholera and Escherichia coli heat-labile toxins: influence of heterologous amino acid substitutions in the cholera B-subunit.
    Bäckström M; Shahabi V; Johansson S; Teneberg S; Kjellberg A; Miller-Podraza H; Holmgren J; Lebens M
    Mol Microbiol; 1997 May; 24(3):489-97. PubMed ID: 9179843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the glycolipid-binding specificities of cholera toxin and porcine Escherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine.
    Teneberg S; Hirst TR; Angström J; Karlsson KA
    Glycoconj J; 1994 Dec; 11(6):533-40. PubMed ID: 7696856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular trafficking of Pseudomonas exotoxin A.
    Saelinger CB; Morris RE
    Antibiot Chemother (1971); 1987; 39():149-59. PubMed ID: 3118781
    [No Abstract]   [Full Text] [Related]  

  • 40. Diphtheria toxin can simultaneously bind to its receptor and adenylyl-(3',5')-uridine 3'-monophosphate.
    Barbieri JT; Collins CM; Collier RJ
    Biochemistry; 1986 Oct; 25(21):6608-11. PubMed ID: 3790545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.