These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the L alpha----HII phase transitions. Siegel DP Biophys J; 1986 Jun; 49(6):1155-70. PubMed ID: 3719074 [TBL] [Abstract][Full Text] [Related]
3. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Siegel DP Biophys J; 1986 Jun; 49(6):1171-83. PubMed ID: 3719075 [TBL] [Abstract][Full Text] [Related]
4. Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. Siegel DP Biophys J; 1993 Nov; 65(5):2124-40. PubMed ID: 8298039 [TBL] [Abstract][Full Text] [Related]
5. Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between L alpha and HII phases. Siegel DP Chem Phys Lipids; 1986 Dec; 42(4):279-301. PubMed ID: 3829210 [TBL] [Abstract][Full Text] [Related]
6. Membrane fusion and the lamellar-to-inverted-hexagonal phase transition in cardiolipin vesicle systems induced by divalent cations. Ortiz A; Killian JA; Verkleij AJ; Wilschut J Biophys J; 1999 Oct; 77(4):2003-14. PubMed ID: 10512820 [TBL] [Abstract][Full Text] [Related]
7. The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Siegel DP Biophys J; 1999 Jan; 76(1 Pt 1):291-313. PubMed ID: 9876142 [TBL] [Abstract][Full Text] [Related]
8. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Siegel DP; Epand RM Biophys J; 1997 Dec; 73(6):3089-111. PubMed ID: 9414222 [TBL] [Abstract][Full Text] [Related]
9. The nature of lipidic particles and their roles in polymorphic transitions. Hui SW; Stewart TP; Boni LT Chem Phys Lipids; 1983 Aug; 33(2):113-26. PubMed ID: 6627529 [TBL] [Abstract][Full Text] [Related]
10. Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study. Hope MJ; Walker DC; Cullis PR Biochem Biophys Res Commun; 1983 Jan; 110(1):15-22. PubMed ID: 6838506 [TBL] [Abstract][Full Text] [Related]
11. The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HII transitions. Verkleij AJ; van Echteld CJ; Gerritsen WJ; Cullis PR; de Kruijff B Biochim Biophys Acta; 1980 Aug; 600(3):620-4. PubMed ID: 7407134 [TBL] [Abstract][Full Text] [Related]
12. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
13. Calcium-induced fusion of didodecylphosphate vesicles: the lamellar to hexagonal II (HII) phase transition. Rupert LA; van Breemen JF; van Bruggen EF; Engberts JB; Hoekstra D J Membr Biol; 1987; 95(3):255-63. PubMed ID: 3585980 [TBL] [Abstract][Full Text] [Related]
14. Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. Siegel DP; Burns JL; Chestnut MH; Talmon Y Biophys J; 1989 Jul; 56(1):161-9. PubMed ID: 2752086 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence depolarization study of lamellar liquid crystalline to inverted cylindrical micellar phase transition of phosphatidylethanolamine. Cheng KH Biophys J; 1989 Jun; 55(6):1025-31. PubMed ID: 2765643 [TBL] [Abstract][Full Text] [Related]
16. Intrinsic curvature in normal and inverted lipid structures and in membranes. Marsh D Biophys J; 1996 May; 70(5):2248-55. PubMed ID: 9172748 [TBL] [Abstract][Full Text] [Related]
17. The role of nonbilayer lipid structures in the fusion of human erythrocytes induced by lipid fusogens. Hope MJ; Cullis PR Biochim Biophys Acta; 1981 Jan; 640(1):82-90. PubMed ID: 7213694 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the hexagonal II phase and its relations to lipidic particles and the lamellar phase. A freeze-fracture study. Van Venetie R; Verkleij AJ Biochim Biophys Acta; 1981 Jul; 645(2):262-9. PubMed ID: 7272289 [TBL] [Abstract][Full Text] [Related]
19. Calcium-induced changes in permeability of dioleoylphosphatidylcholine model membranes containing bovine heart cardiolipin. Smaal EB; Schreuder C; van Baal JB; Tijburg PN; Mandersloot JG; de Kruijff B; de Gier J Biochim Biophys Acta; 1987 Feb; 897(1):191-6. PubMed ID: 3099844 [TBL] [Abstract][Full Text] [Related]
20. Lipidic particles. Verkleij AJ; de Kruijff B; van Echteld CJ; Gerritsen WJ; Mombers C; Noordam PC; Leunissen-Bijvelt J; de Gier J Acta Histochem Suppl; 1981; 23():145-9. PubMed ID: 6784158 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]