These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 6365190)
1. Distinction between changes in membrane potential and surface charge upon chemotactic stimulation of Escherichia coli. Eisenbach M; Margolin Y; Ciobotariu A; Rottenberg H Biophys J; 1984 Feb; 45(2):463-7. PubMed ID: 6365190 [TBL] [Abstract][Full Text] [Related]
2. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation. Bakker EP Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627 [TBL] [Abstract][Full Text] [Related]
3. Role of membrane potential and calcium in chemotactic sensing by bacteria. Snyder MA; Stock JB; Koshland DE J Mol Biol; 1981 Jun; 149(2):241-57. PubMed ID: 6796698 [No Abstract] [Full Text] [Related]
4. Dissipation of membrane potential of Escherichia coli cells induced by macromolecular polylysine. Katsu T; Tsuchiya T; Fujita Y Biochem Biophys Res Commun; 1984 Jul; 122(1):401-6. PubMed ID: 6378203 [TBL] [Abstract][Full Text] [Related]
5. [Proton-potassium exchange in Escherichia coli]. Durgar'ian SS; Martirosov SM Biofizika; 1980; 25(3):469-72. PubMed ID: 6994822 [TBL] [Abstract][Full Text] [Related]
6. Bacterial cytoplasmic membrane permeability assay using ion-selective electrodes. Ohmizo C; Yata M; Katsu T J Microbiol Methods; 2004 Nov; 59(2):173-9. PubMed ID: 15369853 [TBL] [Abstract][Full Text] [Related]
7. [Study of membrane potential of Bacillus subtilis and Escherichia coli cells by the penetration ions methods]. Grinius LL; Daugelabichius RIu; Al'kimavichius GA Biokhimiia; 1980 Sep; 45(9):1609-18. PubMed ID: 6166329 [TBL] [Abstract][Full Text] [Related]
8. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli. Ahmed S; Booth IR Biochem J; 1981 Dec; 200(3):573-81. PubMed ID: 6282253 [TBL] [Abstract][Full Text] [Related]
9. Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation. Kuroki M; Kamo N; Kobatake Y; Okimasu E; Utsumi K Biochim Biophys Acta; 1982 Dec; 693(2):326-34. PubMed ID: 7159582 [TBL] [Abstract][Full Text] [Related]
10. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells. Riley RT; Norred WP; Dorner JW; Cole RJ J Toxicol Environ Health; 1985; 15(6):779-88. PubMed ID: 4057282 [TBL] [Abstract][Full Text] [Related]
11. Potassium and tetraphenylphosphonium ion-selective electrodes for monitoring changes in the permeability of bacterial outer and cytoplasmic membranes. Yasuda K; Ohmizo C; Katsu T J Microbiol Methods; 2003 Jul; 54(1):111-5. PubMed ID: 12732428 [TBL] [Abstract][Full Text] [Related]
12. Probes of membrane potential in Escherichia coli cells. Ghazi A; Schechter E; Letellier L; Labedan B FEBS Lett; 1981 Mar; 125(2):197-200. PubMed ID: 7014255 [No Abstract] [Full Text] [Related]
13. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans. Prasad R; Höfer M Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations. Ahmed I; Krishnamoorthy G Biochim Biophys Acta; 1990 May; 1024(2):298-306. PubMed ID: 1693858 [TBL] [Abstract][Full Text] [Related]
15. New agents to increase the permeability of the outer membrane of Escherichia coli. Katsu T Biochem Int; 1991 Jan; 23(2):413-7. PubMed ID: 1713457 [TBL] [Abstract][Full Text] [Related]
16. Possible energization of K+ accumulation into metabolizing yeast by the protonmotive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetraphenylphosphonium distribution. Boxman AW; Dobbelmann J; Borst-Pauwels GW Biochim Biophys Acta; 1984 Apr; 772(1):51-7. PubMed ID: 6370307 [TBL] [Abstract][Full Text] [Related]
17. Continuous real-time monitoring of cationic porphyrin-induced photodynamic inactivation of bacterial membrane functions using electrochemical sensors. Komagoe K; Kato H; Inoue T; Katsu T Photochem Photobiol Sci; 2011 Jul; 10(7):1181-8. PubMed ID: 21472187 [TBL] [Abstract][Full Text] [Related]
18. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence. Arcangeli A; Olivotto M J Cell Physiol; 1986 Apr; 127(1):17-27. PubMed ID: 3457015 [TBL] [Abstract][Full Text] [Related]
19. Neutral carrier-based "Ca(2+)-selective" microelectrodes for the measurement of tetraphenylphosphonium. Mootha VK; French S; Balaban RS Anal Biochem; 1996 May; 236(2):327-30. PubMed ID: 8660512 [TBL] [Abstract][Full Text] [Related]
20. A process related to membrane potential involved in bacterial chemotaxis to galactose. Eisenbach M; Raz T; Ciobotariu A Biochemistry; 1983 Jun; 22(13):3293-8. PubMed ID: 6349685 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]