BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6365450)

  • 1. Mechanistic studies of cAMP-dependent protein kinase action.
    Bramson HN; Kaiser ET; Mildvan AS
    CRC Crit Rev Biochem; 1984; 15(2):93-124. PubMed ID: 6365450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase.
    Bramson HN; Thomas NE; Kaiser ET
    J Biol Chem; 1985 Dec; 260(29):15452-7. PubMed ID: 4066678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic resonance measurements of intersubstrate distances at the active site of protein kinase using substitution-inert cobalt(III) and chromium(III) complexes of adenosine 5'-(beta, gamma-methylenetriphosphate).
    Granot J; Mildvan AS; Bramson HN; Kaiser ET
    Biochemistry; 1980 Jul; 19(15):3537-43. PubMed ID: 6893273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal spatial requirements for the location of basic residues in peptide substrates for the cyclic AMP-dependent protein kinase.
    Feramisco JR; Glass DB; Krebs EG
    J Biol Chem; 1980 May; 255(9):4240-5. PubMed ID: 6246116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATPase-promoting dead end inhibitors of the cAMP-dependent protein kinase.
    Mendelow M; Prorok M; Salerno A; Lawrence DS
    J Biol Chem; 1993 Jun; 268(17):12289-96. PubMed ID: 8509366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of enzyme-peptide substrate backbone hydrogen bonding in determining protein kinase substrate specificities.
    Thomas NE; Bramson HN; Miller WT; Kaiser ET
    Biochemistry; 1987 Jul; 26(14):4461-6. PubMed ID: 3663600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation of Leu-Arg-Arg-Ala-Ser-Leu-Gly bound in the active site of adenosine cyclic 3',5'-phosphate dependent protein kinase.
    Bramson HN; Thomas NE; Miller WT; Fry DC; Mildvan AS; Kaiser ET
    Biochemistry; 1987 Jul; 26(14):4666-70. PubMed ID: 3663611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isotope partitioning in the adenosine 3',5'-monophosphate dependent protein kinase reaction indicates a steady-state random kinetic mechanism.
    Kong CT; Cook PF
    Biochemistry; 1988 Jun; 27(13):4795-9. PubMed ID: 3048391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR studies of the mechanism of cyclic AMP-dependent protein kinase.
    Mildvan AS; Kaiser ET; Rosevear PR; Bramson HN
    Fed Proc; 1984 Aug; 43(11):2634-9. PubMed ID: 6086412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of amino acid residues involved in substrate recognition by the catalytic subunit of bovine cyclic AMP dependent protein kinase: peptide-based affinity labels.
    Mobashery S; Kaiser ET
    Biochemistry; 1988 May; 27(10):3691-6. PubMed ID: 3408721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple arginine residues contribute to the increased efficacy of peptide substrates for the cAMP-dependent protein kinase.
    Prorok M; Lawrence DS
    Biochem Biophys Res Commun; 1989 Nov; 165(1):368-71. PubMed ID: 2590233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the mechanism of phosphorylation of synthetic polypeptides by a calf thymus cyclic AMP-dependent protein kinase.
    Pomerantz AH; Allfrey VG; Merrifield RB; Johnson EM
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4261-5. PubMed ID: 200911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct structural requirements of Ca2+/phospholipid-dependent protein kinase (protein kinase C) and cAMP-dependent protein kinase as evidenced by synthetic peptide substrates.
    Ferrari S; Marchiori F; Borin G; Pinna LA
    FEBS Lett; 1985 May; 184(1):72-7. PubMed ID: 3157599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of the catalytic subunit of bovine heart cAMP-dependent protein kinase with affinity labels related to peptide substrates.
    Bramson HN; Thomas N; Matsueda R; Nelson NC; Taylor SS; Kaiser ET
    J Biol Chem; 1982 Sep; 257(18):10575-81. PubMed ID: 6286662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular dichroic evidence for an ordered sequence of ligand/binding site interactions in the catalytic reaction of the cAMP-dependent protein kinase.
    Reed J; Kinzel V; Kemp BE; Cheng HC; Walsh DA
    Biochemistry; 1985 Jun; 24(12):2967-73. PubMed ID: 4016081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of multi-site phosphorylation of peptide analogues of ribosomal protein S6 by novel protease-activated protein kinases.
    Wettenhall RE; Gabrielli B; Morrice N; Bozinova L; Kemp BE; Stapleton D
    Pept Res; 1991; 4(3):158-70. PubMed ID: 1823186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncovalent active site interactions enhance the affinity and control the binding order of reversible inhibitors of the cAMP-dependent protein kinase.
    Salerno A; Mendelow M; Prorok M; Lawrence DS
    J Biol Chem; 1990 Oct; 265(30):18079-82. PubMed ID: 2145279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the catalytic mechanism of the p21-activated protein kinase PAK2.
    Wu H; Zheng Y; Wang ZX
    Biochemistry; 2003 Feb; 42(4):1129-39. PubMed ID: 12549935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is there a catalytic base in the active site of cAMP-dependent protein kinase?
    Zhou J; Adams JA
    Biochemistry; 1997 Mar; 36(10):2977-84. PubMed ID: 9062128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A peptide substrate-based affinity label blocks protein kinase C-catalyzed ATP hydrolysis and peptide-substrate phosphorylation.
    Ward NE; Pierce DS; Stewart JR; O'brian CA
    Arch Biochem Biophys; 1999 May; 365(2):248-53. PubMed ID: 10328819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.