These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6365545)

  • 21. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system.
    Wieczorke R; Dlugai S; Krampe S; Boles E
    Cell Physiol Biochem; 2003; 13(3):123-34. PubMed ID: 12876383
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae.
    Busturia A; Lagunas R
    J Gen Microbiol; 1986 Feb; 132(2):379-85. PubMed ID: 3519857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts.
    Kumari R; Pramanik K
    Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.
    Tomitaka M; Taguchi H; Fukuda K; Akamatsu T; Kida K
    J Biosci Bioeng; 2013 Dec; 116(6):706-15. PubMed ID: 23810666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.
    Sedlak M; Ho NW
    Yeast; 2004 Jun; 21(8):671-84. PubMed ID: 15197732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae.
    Reijenga KA; Snoep JL; Diderich JA; van Verseveld HW; Westerhoff HV; Teusink B
    Biophys J; 2001 Feb; 80(2):626-34. PubMed ID: 11159431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deuterium isotope effects in the fermentation of hexoses to ethanol by Saccharomyces cerevisiae. I. Hydrogen exchange in the glycolytic pathway.
    Saur WK; Crespi HL; Halevi EA; Katz JJ
    Biochemistry; 1968 Oct; 7(10):3529-36. PubMed ID: 5681462
    [No Abstract]   [Full Text] [Related]  

  • 28. Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase less strains of Saccharomyces cerevisiae.
    Gamo FJ; Portillo F; Gancedo C
    FEMS Microbiol Lett; 1993 Feb; 106(3):233-7. PubMed ID: 8454188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.
    Tani T; Taguchi H; Fujimori KE; Sahara T; Ohgiya S; Kamagata Y; Akamatsu T
    J Biosci Bioeng; 2016 Oct; 122(4):446-55. PubMed ID: 27067371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose.
    Kodama S; Nakanishi H; Thalagala TA; Isono N; Hisamatsu M
    J Biosci Bioeng; 2013 May; 115(5):557-61. PubMed ID: 23273910
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae.
    Beullens M; Mbonyi K; Geerts L; Gladines D; Detremerie K; Jans AW; Thevelein JM
    Eur J Biochem; 1988 Feb; 172(1):227-31. PubMed ID: 2831059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics and efficiency of glutamine production by coupling of a bacterial glutamine synthetase reaction with the alcoholic fermentation system of baker's yeast.
    Wakisaka S; Ohshima Y; Ogawa M; Tochikura T; Tachiki T
    Appl Environ Microbiol; 1998 Aug; 64(8):2952-7. PubMed ID: 9687456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose.
    Ni H; Laplaza JM; Jeffries TW
    Appl Environ Microbiol; 2007 Apr; 73(7):2061-6. PubMed ID: 17277207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The danger of metabolic pathways with turbo design.
    Teusink B; Walsh MC; van Dam K; Westerhoff HV
    Trends Biochem Sci; 1998 May; 23(5):162-9. PubMed ID: 9612078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The combination of NAD+-dependent deacetylase gene deletion and the interruption of gluconeogenesis causes increased glucose metabolism in budding yeast.
    Masumoto H; Matsuyama S
    PLoS One; 2018; 13(3):e0194942. PubMed ID: 29579121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae.
    Roca C; Haack MB; Olsson L
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):578-83. PubMed ID: 12925863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Gustafsson L
    Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intracellular ATP in a glucosephosphate isomerase mutant of Saccharomyces cerevisiae.
    Ugarova NN; Romay C; Garcia I; Pascual C
    Folia Microbiol (Praha); 1986; 31(2):113-9. PubMed ID: 3519387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis.
    Bonini BM; Van Vaeck C; Larsson C; Gustafsson L; Ma P; Winderickx J; Van Dijck P; Thevelein JM
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):261-8. PubMed ID: 10926852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of glucose on xylose utilization in Saccharomyces cerevisiae harboring the xylose reductase gene.
    Han JH; Park JY; Yoo KS; Kang HW; Choi GW; Chung BW; Min J
    Arch Microbiol; 2011 May; 193(5):335-40. PubMed ID: 21279628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.