These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 6365546)
1. Interactions in vivo between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and the glycerol and maltose uptake systems of Salmonella typhimurium. Nelson SO; Postma PW Eur J Biochem; 1984 Feb; 139(1):29-34. PubMed ID: 6365546 [TBL] [Abstract][Full Text] [Related]
2. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium. Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268 [TBL] [Abstract][Full Text] [Related]
3. Sugar transport. 2nducer exclusion and regulation of the melibiose, maltose, glycerol, and lactose transport systems by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Roseman S J Biol Chem; 1976 Nov; 251(21):6606-15. PubMed ID: 789370 [TBL] [Abstract][Full Text] [Related]
4. Regulation of glycerol and maltose uptake by the IIAGlc-like domain of IINag of the phosphotransferase system in Salmonella typhimurium LT2. van der Vlag J; Postma PW Mol Gen Genet; 1995 Jul; 248(2):236-41. PubMed ID: 7651347 [TBL] [Abstract][Full Text] [Related]
5. Sugar transport by the bacterial phosphotransferase system. In vivo regulation of lactose transport in Escherichia coli by IIIGlc, a protein of the phosphoenolpyruvate:glycose phosphotransferase system. Mitchell WJ; Saffen DW; Roseman S J Biol Chem; 1987 Nov; 262(33):16254-60. PubMed ID: 2824484 [TBL] [Abstract][Full Text] [Related]
6. Quantification of the regulation of glycerol and maltose metabolism by IIAGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system in Salmonella typhimurium. van der Vlag J; van Dam K; Postma PW J Bacteriol; 1994 Jun; 176(12):3518-26. PubMed ID: 8206828 [TBL] [Abstract][Full Text] [Related]
7. Sugar transport by the bacterial phosphotransferase system. Reconstitution of inducer exclusion in Salmonella typhimurium membrane vesicles. Misko TP; Mitchell WJ; Meadow ND; Roseman S J Biol Chem; 1987 Nov; 262(33):16261-6. PubMed ID: 3316216 [TBL] [Abstract][Full Text] [Related]
8. Interaction between IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system and glycerol kinase of Salmonella typhimurium. Postma PW; Epstein W; Schuitema AR; Nelson SO J Bacteriol; 1984 Apr; 158(1):351-3. PubMed ID: 6325396 [TBL] [Abstract][Full Text] [Related]
9. The phosphoenolpyruvate:glucose phosphotransferase system of Salmonella typhimurium. The phosphorylated form of IIIGlc. Nelson SO; Schuitema AR; Postma PW Eur J Biochem; 1986 Jan; 154(2):337-41. PubMed ID: 3510871 [TBL] [Abstract][Full Text] [Related]
10. Phosphoenolpyruvate:sugar phosphotransferase system-mediated regulation of carbohydrate metabolism in Salmonella typhimurium. Nelson SO; Scholte BJ; Postma PW J Bacteriol; 1982 May; 150(2):604-15. PubMed ID: 6279563 [TBL] [Abstract][Full Text] [Related]
11. Permease-specific mutations in Salmonella typhimurium and Escherichia coli that release the glycerol, maltose, melibiose, and lactose transport systems from regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Saier MH; Straud H; Massman LS; Judice JJ; Newman MJ; Feucht BU J Bacteriol; 1978 Mar; 133(3):1358-67. PubMed ID: 346569 [TBL] [Abstract][Full Text] [Related]
12. Glucose-specific permease of the bacterial phosphotransferase system: phosphorylation and oligomeric structure of the glucose-specific IIGlc-IIIGlc complex of Salmonella typhimurium. Erni B Biochemistry; 1986 Jan; 25(2):305-12. PubMed ID: 3513827 [TBL] [Abstract][Full Text] [Related]
13. Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. Novotny MJ; Frederickson WL; Waygood EB; Saier MH J Bacteriol; 1985 May; 162(2):810-6. PubMed ID: 2985549 [TBL] [Abstract][Full Text] [Related]
16. Transport of trehalose in Salmonella typhimurium. Postma PW; Keizer HG; Koolwijk P J Bacteriol; 1986 Dec; 168(3):1107-11. PubMed ID: 3023298 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes. Dean DA; Reizer J; Nikaido H; Saier MH J Biol Chem; 1990 Dec; 265(34):21005-10. PubMed ID: 2250006 [TBL] [Abstract][Full Text] [Related]
18. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
19. Isolation of IIIGlc of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Salmonella typhimurium. Scholte BJ; Schuitema AR; Postma PW J Bacteriol; 1981 Oct; 148(1):257-64. PubMed ID: 7026533 [TBL] [Abstract][Full Text] [Related]
20. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium. Meadow ND; Roseman S J Biol Chem; 1982 Dec; 257(23):14526-37. PubMed ID: 6754734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]