These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6366739)

  • 1. A new experimental approach for studying the association between RNA polymerase and the tet promoter of pBR322.
    Bertrand-Burggraf E; Lefèvre JF; Daune M
    Nucleic Acids Res; 1984 Feb; 12(3):1697-706. PubMed ID: 6366739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of superhelicity on the transcription from the tet promoter of pBR322. Abortive initiation and unwinding experiments.
    Bertrand-Burggraf E; Schnarr M; Lefevre JF; Daune M
    Nucleic Acids Res; 1984 Oct; 12(20):7741-52. PubMed ID: 6387626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter.
    Johnson RS; Chester RE
    J Mol Biol; 1998 Oct; 283(2):353-70. PubMed ID: 9769210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-lambda PR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening.
    Roe JH; Burgess RR; Record MT
    J Mol Biol; 1985 Aug; 184(3):441-53. PubMed ID: 3900414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophage T7 E promoter: identification and measurement of kinetics of association with Escherichia coli RNA polymerase.
    Prosen DE; Cech CL
    Biochemistry; 1985 Apr; 24(9):2219-27. PubMed ID: 3922411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and mechanism of the interaction of Escherichia coli RNA polymerase with the lambda PR promoter.
    Roe JH; Burgess RR; Record MT
    J Mol Biol; 1984 Jul; 176(4):495-522. PubMed ID: 6235375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reiterative copying by E.coli RNA polymerase during transcription initiation of mutant pBR322 tet promoters.
    Harley CB; Lawrie J; Boyer HW; Hedgpeth J
    Nucleic Acids Res; 1990 Feb; 18(3):547-52. PubMed ID: 2408014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates.
    Saecker RM; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Record MT
    J Mol Biol; 2002 Jun; 319(3):649-71. PubMed ID: 12054861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies of the modulation of ada promoter activity by upstream elements.
    Bertrand-Burggraf E; Dunand J; Fuchs RP; Lefèvre JF
    EMBO J; 1990 Jul; 9(7):2265-71. PubMed ID: 2162767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of RNA I by the RNA polymerase from Micrococcus luteus on the Escherichia coli plasmid pBR322.
    Brack RP; Domdey H; Hartmann GR
    Eur J Biochem; 1984 Jun; 141(3):453-9. PubMed ID: 6204867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the beta-lactamase promoter of pBR322.
    Russell DR; Bennett GN
    Nucleic Acids Res; 1981 Jun; 9(11):2517-33. PubMed ID: 6269053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization in vitro of the effect of spacer length on the activity of Escherichia coli RNA polymerase at the TAC promoter.
    Mulligan ME; Brosius J; McClure WR
    J Biol Chem; 1985 Mar; 260(6):3529-38. PubMed ID: 3882710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between RNA polymerase and a ribosomal RNA promoter of E. coli.
    Hamming J; Gruber M; AB G
    Nucleic Acids Res; 1979 Oct; 7(4):1019-33. PubMed ID: 388348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of mutations on discrete steps in transcription initiation at the lambda PRE promoter.
    Shih MC; Gussin GN
    Cell; 1983 Oct; 34(3):941-9. PubMed ID: 6226364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme.
    Schulz A; Langowski J; Rippe K
    J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli promoter -10 and -35 region homologies correlate with binding and isomerization kinetics.
    Studnicka GM
    Biochem J; 1988 Jun; 252(3):825-31. PubMed ID: 3048250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of supercoiling on the abortive initiation kinetics of the RNA-I promoter of ColE1 plasmid DNA.
    Wood DC; Lebowitz J
    J Biol Chem; 1984 Sep; 259(18):11184-7. PubMed ID: 6206065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primed abortive initiation of RNA synthesis by E. coli RNA polymerase on T7 DNA. Steady state kinetic studies.
    Smagowicz WJ; Scheit KH
    Nucleic Acids Res; 1978 Jun; 5(6):1919-32. PubMed ID: 353734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.