These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6366739)

  • 41. Structure of a promotor on plasmid pMB9 derived from plasmid pSC101.
    Pannekoek H; Maat J; van den Berg E; Noordermeer I
    Nucleic Acids Res; 1980 Apr; 8(7):1535-50. PubMed ID: 6253940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mg2+ does not induce isomerization of the open transcription complex of Escherichia coli RNA polymerase at the model Pa promoter bearing consensus -10 and -35 hexamers.
    Kolasa IK; Loziński T; Wierzchowski KL
    Acta Biochim Pol; 2001; 48(4):985-94. PubMed ID: 11996006
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Interaction of RNA polymerase with hybrid plasmids carrying Escherichia coli threonine operon].
    Kozlov IuI; Mashko SV; Savel'ev ; Bogush VG; Moshentseva VN
    Mol Biol (Mosk); 1981; 15(6):1245-57. PubMed ID: 6275258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter.
    Pribnow D
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):784-8. PubMed ID: 1093168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The interaction of RNA polymerase II from wheat with supercoiled and linear plasmid templates.
    Lilley DM; Houghton M
    Nucleic Acids Res; 1979 Feb; 6(2):507-23. PubMed ID: 370789
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Col E1 DNA transcription in Escherichia coli RNA-polymerase system in vitro].
    Denisova LIa; Zagrebel'nyi SN; Kileva EV; Pustoshilova NM; Filippov VA
    Mol Biol (Mosk); 1981; 15(4):768-78. PubMed ID: 6268964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic and structural characterisation of multiple steps during complex formation between E. coli RNA polymerase and the tetR promoter from pSC101.
    Duval-Valentin G; Ehrlich R
    Nucleic Acids Res; 1987 Jan; 15(2):575-94. PubMed ID: 3547327
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Promoter recognition and transcription initiation in E. coli.
    Ehrlich R; Marin M; Larousse A; Gabarro-Arpa J; Schmitt B; Reiss C
    Folia Biol (Praha); 1984; 30 Spec No():105-18. PubMed ID: 6373393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Repression and activation of promoter-bound RNA polymerase activity by Gal repressor.
    Choy HE; Hanger RR; Aki T; Mahoney M; Murakami K; Ishihama A; Adhya S
    J Mol Biol; 1997 Sep; 272(3):293-300. PubMed ID: 9325090
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A temperature-sensitive mutant of Escherichia coli affected in the alpha subunit of RNA polymerase.
    Mehrpouyan M; Champney WS
    Nucleic Acids Res; 1990 Jun; 18(12):3445-50. PubMed ID: 2194160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electron microscopic mapping of Thermus thermophilus RNA polymerase binding sites on plasmid pBR322.
    González B; Davagnino J; Vicuña R
    Comp Biochem Physiol B; 1985; 80(3):485-7. PubMed ID: 4006441
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Specific modification of DNA at E. coli RNA-polymerase binding sites].
    Petrenko VA; Semenova LN; Boldyrev AN; Kipriianov SM
    Mol Gen Mikrobiol Virusol; 1985 Dec; (12):19-25. PubMed ID: 3916215
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for the Mycobacterium tuberculosis RNA polymerase.
    Jensen D; Ruiz Manzano A; Rector M; Tomko EJ; Record MT; Galburt EA
    Nucleic Acids Res; 2023 Oct; 51(19):e99. PubMed ID: 37739412
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for
    Jensen D; Manzano AR; Rector M; Tomko EJ; Record MT; Galburt EA
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993414
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissecting the stochastic transcription initiation process in live Escherichia coli.
    Lloyd-Price J; Startceva S; Kandavalli V; Chandraseelan JG; Goncalves N; Oliveira SM; Häkkinen A; Ribeiro AS
    DNA Res; 2016 Jun; 23(3):203-14. PubMed ID: 27026687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo transcription kinetics of a synthetic gene uninvolved in stress-response pathways in stressed Escherichia coli cells.
    Muthukrishnan AB; Martikainen A; Neeli-Venkata R; Ribeiro AS
    PLoS One; 2014; 9(9):e109005. PubMed ID: 25268540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamics of transcription driven by the tetA promoter, one event at a time, in live Escherichia coli cells.
    Muthukrishnan AB; Kandhavelu M; Lloyd-Price J; Kudasov F; Chowdhury S; Yli-Harja O; Ribeiro AS
    Nucleic Acids Res; 2012 Sep; 40(17):8472-83. PubMed ID: 22730294
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stochastic simulations of the tetracycline operon.
    Biliouris K; Daoutidis P; Kaznessis YN
    BMC Syst Biol; 2011 Jan; 5():9. PubMed ID: 21247421
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthetic tetracycline-inducible regulatory networks: computer-aided design of dynamic phenotypes.
    Sotiropoulos V; Kaznessis YN
    BMC Syst Biol; 2007 Jan; 1():7. PubMed ID: 17408514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of a stochastically simulated gene network model via simulated annealing.
    Tomshine J; Kaznessis YN
    Biophys J; 2006 Nov; 91(9):3196-205. PubMed ID: 16920827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.