These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 6366742)

  • 1. Physical properties of the E. coli 4.5S RNA: first results suggest a hairpin helix of unusual thermal stability.
    Bourgaize DB; Farrell C; Langley KH; Fournier MJ
    Nucleic Acids Res; 1984 Feb; 12(4):2019-34. PubMed ID: 6366742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melting of local ordered structures in yeast 5S ribosomal RNA in aqueous salts.
    Ohta S; Maruyama S; Nitta K; Sugai S
    Nucleic Acids Res; 1983 May; 11(10):3363-73. PubMed ID: 6344010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proton-coupled conformational switch of Escherichia coli 5S ribosomal RNA.
    Kao TH; Crothers DM
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3360-4. PubMed ID: 6158045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enhanced thermostability in thermophilic 5-S ribonucleic acids under physiological salt conditions.
    Nazar RN; Sprott GD; Matheson AT; Van NT
    Biochim Biophys Acta; 1978 Nov; 521(1):288-94. PubMed ID: 363159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does 5S RNA from E. coli have a pseudoknotted structure?
    Göringer HU; Wagner R
    Nucleic Acids Res; 1986 Sep; 14(18):7473-85. PubMed ID: 2429262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 3' terminus of 16S rRNA: secondary structure and interaction with ribosomal protein S1.
    Yuan RC; Steitz JA; Moore PB; Crothers DM
    Nucleic Acids Res; 1979 Dec; 7(8):2399-418. PubMed ID: 392471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bases defining an ammonium and magnesium ion-dependent tertiary structure within the large subunit ribosomal RNA.
    Lu M; Draper DE
    J Mol Biol; 1994 Dec; 244(5):572-85. PubMed ID: 7527467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathway-dependent refolding of E. coli 5S RNA.
    Weidner H; Crothers DM
    Nucleic Acids Res; 1977 Oct; 4(10):3401-14. PubMed ID: 337236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of magnesium ion on the structure of the 5S RNA from Escherichia coli. An imino proton magnetic resonance study of the helix I, IV, and V regions of the molecule.
    Leontis NB; Ghosh P; Moore PB
    Biochemistry; 1986 Nov; 25(23):7386-92. PubMed ID: 3542026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation of B. stearothermophilus 5S ribosomal RNA.
    Fukushima T; Nitta K; Sugai S
    Nucleic Acids Symp Ser; 1986; (17):207-10. PubMed ID: 3562267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA structural dynamics: pre-melting and melting transitions in E. coli 5S rRNA.
    Pieler T; Digweed M; Erdmann VA
    J Biomol Struct Dyn; 1985 Dec; 3(3):495-514. PubMed ID: 3917034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calorimetric measurements of the destabilisation of a ribosomal RNA hairpin by dimethylation of two adjacent adenosines.
    Heus HA; Van Kimmenade JM; van Knippenberg PH; Hinz HJ
    Nucleic Acids Res; 1983 Jan; 11(1):203-10. PubMed ID: 6346264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of the conformation of RNA from phage MS2 and 16S rRNA. Accessibility to nucleases S1 and SV specific to secondary structure and thermal stability].
    Grechko VV; Borisova OF; Sakharova NK; Timokhina GI; Kuznetsova NV
    Mol Biol (Mosk); 1987; 21(2):506-14. PubMed ID: 2439895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistage unfolding of wheat germ ribosomal 5S RNA analyzed by differential scanning calorimetry.
    Li SJ; Marshall AG
    Biochemistry; 1985 Jul; 24(15):4047-52. PubMed ID: 4052382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt dependence and thermodynamic interpretation of the thermal denaturation of small DNA restriction fragments.
    Hillen W; Goodman TC; Wells RD
    Nucleic Acids Res; 1981 Jan; 9(2):415-36. PubMed ID: 6259627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the thermal stability of ribosomes and biologically active subribosomal particles.
    Cox RA; Pratt H; Huvos P; Higginson B; Hirst W
    Biochem J; 1973 Jul; 134(3):775-93. PubMed ID: 4584137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium and kinetics of the thermal unfolding of yeast 5S ribosomal RNA.
    Maruyama S; Tatsuki T; Sugai S
    J Biochem; 1979 Nov; 86(5):1487-94. PubMed ID: 391809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An estimate of the nearest neighbor base-pair content of 5S RNA using CD and absorption spectroscopy.
    Johnson KH; Gray DM
    Biopolymers; 1991 Mar; 31(4):385-95. PubMed ID: 1863690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial melting of the segment around pseudouridine in yeast 5S RNA.
    Nagamatsu K; Miyazawa Y
    Biochem Biophys Res Commun; 1983 Jul; 114(1):81-7. PubMed ID: 6349630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg2+ dependence of the structure and thermodynamics of wheat germ and lupin seeds 5S rRNA.
    Kuliński T; Bratek-Wiewiórowska MD; Zielenkiewicz A; Zielenkiewicz W
    J Biomol Struct Dyn; 1997 Feb; 14(4):495-507. PubMed ID: 9172649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.