These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6368529)

  • 1. Magnesium cation induced conformational change of yeast tRNAPhe as studied by singlet-singlet energy transfer.
    Nagamatsu K; Miyazawa Y
    J Biochem; 1983 Dec; 94(6):1967-71. PubMed ID: 6368529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and Mg2+ dependent behavior of pseudouridines at 39th and 55th of yeast tRNAPhe.
    Nagamatsu K; Miyazawa Y
    Nucleic Acids Symp Ser; 1983; (12):133-6. PubMed ID: 6664847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding.
    Bujalowski W; Graeser E; McLaughlin LW; Proschke D
    Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves.
    Römer R; Hach R
    Eur J Biochem; 1975 Jun; 55(1):271-84. PubMed ID: 1100382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational change of the L-shaped tRNA(Phe) molecule.
    Nagamatsu K
    J Biomol Struct Dyn; 1989 Feb; 6(4):729-39. PubMed ID: 2619937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conformation of the tRNAPhe anticodon loop monitored by fluorescence.
    Wells BD
    Nucleic Acids Res; 1984 Feb; 12(4):2157-70. PubMed ID: 6366743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range conformational transition in yeast tRNAPhe, induced by the Y-base removal and detected by chloroacetaldehyde modification.
    Krzyzosiak WJ; Ciesiołka J
    Nucleic Acids Res; 1983 Oct; 11(19):6913-21. PubMed ID: 6356038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrostatic molecular potential of yeast tRNAPhe. (I). The potential due to the phosphate backbone.
    Lavery R; Pullman A; Pullman B
    Nucleic Acids Res; 1980 Mar; 8(5):1061-79. PubMed ID: 7003554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of some naturally occurring cations with phenylalanine and initiator tRNA from yeast as reflected by their thermal stability.
    Heerschap A; Walters JA; Hilbers CW
    Biophys Chem; 1985 Aug; 22(3):205-17. PubMed ID: 3902111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Binding of the yeast phenylalanine tRNA with Escherichia coli ribosomes. Effect of the removal of a modified base from the 3'-end of the anticodon on codon-anticodon interaction].
    Katunin VI; Kirillov SV
    Mol Biol (Mosk); 1984; 18(6):1486-96. PubMed ID: 6084167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Mg2+ on solution conformation of two different transfer ribonucleic acids.
    Thomas JC; Schurr JM; Reid BR; Ribeiro NS; Hare DR
    Biochemistry; 1984 Nov; 23(23):5414-20. PubMed ID: 6210103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-ligant interactions. (I) Magnesium binding sites in yeast tRNAPhe.
    Holbrook SR; Sussman JL; Warrant RW; Church GM; Kim SH
    Nucleic Acids Res; 1977 Aug; 4(8):2811-20. PubMed ID: 333395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method to monitor the rate of conformational transitions in RNA.
    Maglott EJ; Glick GD
    Nucleic Acids Res; 1997 Aug; 25(16):3297-301. PubMed ID: 9241244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium ion inner sphere complex in the anticodon loop of phenylalanine transfer ribonucleic acid.
    Labuda D; Pörschke D
    Biochemistry; 1982 Jan; 21(1):49-53. PubMed ID: 6916606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anticodon-anticodon interaction induces conformational changes in tRNA: yeast tRNAAsp, a model for tRNA-mRNA recognition.
    Moras D; Dock AC; Dumas P; Westhof E; Romby P; Ebel JP; Giegé R
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):932-6. PubMed ID: 3513167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast tRNAPhe conformation wheels: a novel probe of the monoclinic and orthorhombic models.
    Srinivasan AR; Olson WK
    Nucleic Acids Res; 1980 May; 8(10):2307-29. PubMed ID: 7001355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome binding by tRNAs with fluorescent labeled 3' termini.
    Wells BD; Cantor CR
    Nucleic Acids Res; 1980 Jul; 8(14):3229-46. PubMed ID: 6160468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of spermine on the structural dynamics of yeast tRNAPhe.
    Nilsson L; Rigler R; Wintermeyer W
    Biochim Biophys Acta; 1983 Sep; 740(4):460-5. PubMed ID: 6349691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular rulers for measuring RNA structure: sites of crosslinking in chlorambucilyl-phenylalanyl-tRNAPhe (yeast) and chlorambucilyl-pentadecaprolyl-phenylalanyl-tRNAPhe (yeast) intramolecularly crosslinked in aqueous solution.
    Wickstrom E; Behlen LS; Reuben MA; Ainpour PR
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2082-5. PubMed ID: 7017723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.