These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6368543)

  • 1. Structural homology of microtubule-associated proteins 1 and 2 demonstrated by peptide mapping and immunoreactivity.
    Herrmann H; Pytela R; Dalton JM; Wiche G
    J Biol Chem; 1984 Jan; 259(1):612-7. PubMed ID: 6368543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural differences of microtubule associated proteins from brain probed by tryptic peptide mapping.
    Tanabe K; Sato C; Kobayashi T; Takahashi T
    J Biochem; 1986 Jul; 100(1):59-65. PubMed ID: 3759938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microheterogeneity of microtubule-associated proteins, MAP-1 and MAP-2, and differential phosphorylation of individual subcomponents.
    Herrmann H; Dalton JM; Wiche G
    J Biol Chem; 1985 May; 260(9):5797-803. PubMed ID: 2985613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calmodulin-dependent multifunctional protein kinase. Evidence for isoenzyme forms in mammalian tissues.
    Shenolikar S; Lickteig R; Hardie DG; Soderling TR; Hanley RM; Kelly PT
    Eur J Biochem; 1986 Dec; 161(3):739-47. PubMed ID: 3539597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular aspects of MAP-1 and MAP-2: microheterogeneity, in vitro localization and distribution in neuronal and nonneuronal cells.
    Wiche G; Herrmann H; Dalton JM; Foisner R; Leichtfried FE; Lassmann H; Koszka C; Briones E
    Ann N Y Acad Sci; 1986; 466():180-98. PubMed ID: 3460414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the microtubule-binding domain of MAP-2.
    Gottlieb RA; Murphy DB
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1782-9. PubMed ID: 4055896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments.
    Selden SC; Pollard TD
    J Biol Chem; 1983 Jun; 258(11):7064-71. PubMed ID: 6304075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the forskolin labeling sites to both halves of P-glycoprotein: similarity of the sites labeled by forskolin and prazosin.
    Morris DI; Greenberger LM; Bruggemann EP; Cardarelli C; Gottesman MM; Pastan I; Seamon KB
    Mol Pharmacol; 1994 Aug; 46(2):329-37. PubMed ID: 7915819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of brain and pituitary immunoreactive prolactin by peptide mapping and lectin affinity chromatography.
    DeVito WJ
    Endocrinology; 1989 Nov; 125(5):2439-44. PubMed ID: 2791995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vesikin, a vesicle associated ATPase from squid axoplasm and optic lobe, has characteristics in common with vertebrate brain MAP 1 and MAP 2.
    Do CV; Sears EB; Gilbert SP; Sloboda RD
    Cell Motil Cytoskeleton; 1988; 10(1-2):246-54. PubMed ID: 2460257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical cleavage of polyomavirus major structural protein VP1: identification of cleavage products and evidence that the receptor moiety resides in the carboxy-terminal region.
    Anders DG; Consigli RA
    J Virol; 1983 Oct; 48(1):197-205. PubMed ID: 6310143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo proteins of defective interfering particles of poliovirus.
    Tershak DR
    Can J Microbiol; 1984 Apr; 30(4):461-9. PubMed ID: 6331618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of the phosphorylation sites for different kinases in the microtubule-associated protein MAP2.
    Hernández MA; Wandosell F; Avila J
    J Neurochem; 1987 Jan; 48(1):84-93. PubMed ID: 3025370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide mapping analysis of the avian progesterone receptor.
    Puri RK; Toft DO
    J Biol Chem; 1986 Apr; 261(12):5651-7. PubMed ID: 3514620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential distribution of microtubule-associated proteins MAP-1 and MAP-2 in neurons of rat brain and association of MAP-1 with microtubules of neuroblastoma cells (clone N2A).
    Wiche G; Briones E; Hirt H; Krepler R; Artlieb U; Denk H
    EMBO J; 1983; 2(11):1915-20. PubMed ID: 6641705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the variable major proteins of Borrelia hermsii.
    Barbour AG; Barrera O; Judd RC
    J Exp Med; 1983 Dec; 158(6):2127-40. PubMed ID: 6644241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of a major heat-stable microtubule-associated protein in HeLa cells and 190-kDa microtubule-associated protein in bovine adrenal cortex.
    Murofushi H; Kotani S; Aizawa H; Maekawa S; Sakai H
    J Biochem; 1987 Nov; 102(5):1101-12. PubMed ID: 3481365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common antigenic determinants of the tubulin binding domains of the microtubule-associated proteins MAP-2 and tau.
    Rivas-Berríos A; Hernández MA; Domínguez J; Avila J; Maccioni RB
    Biochim Biophys Acta; 1990 Sep; 1040(3):382-90. PubMed ID: 1699604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application and limitations of the multiple antigen peptide (MAP) system in the production and evaluation of anti-peptide and anti-protein antibodies.
    Briand JP; Barin C; Van Regenmortel MH; Muller S
    J Immunol Methods; 1992 Dec; 156(2):255-65. PubMed ID: 1474260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide maps of five human pepsin isoenzymes and other aspartic proteinases.
    Jones AT; Roberts NB
    J Chromatogr; 1992 May; 599(1-2):179-84. PubMed ID: 1618988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.