These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 6369003)

  • 1. Cellular control models with linked positive and negative feedback and delays. II. Linear analysis and local stability.
    Mahaffy JM
    J Theor Biol; 1984 Jan; 106(2):103-18. PubMed ID: 6369003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular control models with linked positive and negative feedback and delays. I. The models.
    Mahaffy JM
    J Theor Biol; 1984 Jan; 106(2):89-102. PubMed ID: 6369005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data.
    Yildirim N; Mackey MC
    Biophys J; 2003 May; 84(5):2841-51. PubMed ID: 12719218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose.
    Narang A; Pilyugin SS
    Bull Math Biol; 2008 May; 70(4):1032-64. PubMed ID: 18246403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained oscillations and threshold phenomena in an operon control circuit.
    Sanglier M; Nicolis G
    Biophys Chem; 1976 Mar; 4(2):113-21. PubMed ID: 769858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bistability and Nonmonotonic Induction of the lac Operon in the Natural Lactose Uptake System.
    Zander D; Samaga D; Straube R; Bettenbrock K
    Biophys J; 2017 May; 112(9):1984-1996. PubMed ID: 28494968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bistability and hysteresis in epigenetic regulation of the lactose operon. Since Delbrück, a long series of ignored models.
    Laurent M; Charvin G; Guespin-Michel J
    Cell Mol Biol (Noisy-le-grand); 2005 Dec; 51(7):583-94. PubMed ID: 16359608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of bistability in induction of the Escherichia coli lac operon.
    Dreisigmeyer DW; Stajic J; Nemenman I; Hlavacek WS; Wall ME
    IET Syst Biol; 2008 Sep; 2(5):293-303. PubMed ID: 19045824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico evolved lac operons exhibit bistability for artificial inducers, but not for lactose.
    van Hoek MJ; Hogeweg P
    Biophys J; 2006 Oct; 91(8):2833-43. PubMed ID: 16877514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.
    Santillán M; Mackey MC
    Biophys J; 2004 Mar; 86(3):1282-92. PubMed ID: 14990461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model of the lac operon: inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.
    Wong P; Gladney S; Keasling JD
    Biotechnol Prog; 1997; 13(2):132-43. PubMed ID: 9104037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic model for interaction of regulatory proteins and RNA polymerase with the control region of the lac operon of Escherichia coli.
    Mandecki W
    J Theor Biol; 1979 Nov; 81(1):105-22. PubMed ID: 393907
    [No Abstract]   [Full Text] [Related]  

  • 13. Analysis of lactose metabolism in E. Coli using reachability analysis of hybrid systems.
    Halász A; Kumar V; Imieliński M; Belta C; Sokolsky O; Pathak S; Rubin H
    IET Syst Biol; 2007 Mar; 1(2):130-48. PubMed ID: 17441554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction.
    Oehler S; Alberti S; Müller-Hill B
    Nucleic Acids Res; 2006; 34(2):606-12. PubMed ID: 16432263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of lactose transport in Escherichia coli.
    Wilson DM; Kusch M; Flagg-Newton JL; Wilson TH
    FEBS Lett; 1980 Aug; 117 Suppl():K37-44. PubMed ID: 6252048
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of DNA looping on the induction kinetics of the lac operon.
    Narang A
    J Theor Biol; 2007 Aug; 247(4):695-712. PubMed ID: 17490688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and bistability in a reduced model of the lac operon.
    Yildirim N; Santillan M; Horike D; Mackey MC
    Chaos; 2004 Jun; 14(2):279-92. PubMed ID: 15189056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling network dynamics: the lac operon, a case study.
    Vilar JM; Guet CC; Leibler S
    J Cell Biol; 2003 May; 161(3):471-6. PubMed ID: 12743100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA looping in cellular repression of transcription of the galactose operon.
    Mandal N; Su W; Haber R; Adhya S; Echols H
    Genes Dev; 1990 Mar; 4(3):410-8. PubMed ID: 2186968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.