BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6369144)

  • 1. Effect of yeast growth conditions on yeast-mycelial transition in Candida albicans.
    Bell WM; Chaffin WL
    Mycopathologia; 1983 Dec; 84(1):41-4. PubMed ID: 6369144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient-limited yeast growth in Candida albicans: effect on yeast-mycelial transition.
    Bell WM; Chaffin WL
    Can J Microbiol; 1980 Jan; 26(1):102-5. PubMed ID: 6996797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of culture conditions on the in vitro infection of fibroblasts by Candida albicans.
    Merkel GJ
    Can J Microbiol; 1992 Feb; 38(2):135-42. PubMed ID: 1521187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between the glucose uptake system and growth cessation in Candida albicans.
    Cho T; Hagihara Y; Kaminishi H; Watanabe K
    J Med Vet Mycol; 1994 Dec; 32(6):461-6. PubMed ID: 7738728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Candida albicans on artificial D-glucose derivatives.
    Hrmová M; Sturdík E; Kosík M; Gemeiner P; Petrus L
    Z Allg Mikrobiol; 1983; 23(5):303-12. PubMed ID: 6353783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH, carbon source and K+ on the Na+-inhibited germ tube formation of Candida albicans.
    Biswas SK; Yokoyama K; Nishimura K; Miyaji M
    Med Mycol; 2000 Oct; 38(5):363-9. PubMed ID: 11092383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of mycelial type of development in Candida albicans by low glucose concentration.
    Hrmová M; Drobnica L
    Mycopathologia; 1981 Nov; 76(2):83-96. PubMed ID: 7033795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine.
    Hrmová M; Drobnica L
    Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1.
    Maidan MM; Thevelein JM; Van Dijck P
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):291-3. PubMed ID: 15667329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological commitment in Candida albicans.
    Chaffin WL; Wheeler DE
    Can J Microbiol; 1981 Jan; 27(1):131-7. PubMed ID: 7011513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trehalose hydrolysis is not required for human serum-induced dimorphic transition in Candida albicans: evidence from a tps1/tps1 mutant deficient in trehalose synthesis.
    Argüelles JC; Rodriguez T; Alvarez-Peral FJ
    Res Microbiol; 1999 Oct; 150(8):521-9. PubMed ID: 10577485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of glucose in the pH regulation of germ-tube formation in Candida albicans.
    Pollack JH; Hashimoto T
    J Gen Microbiol; 1987 Feb; 133(2):415-24. PubMed ID: 3309155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.
    Torosantucci A; Angiolella L; Filesi C; Cassone A
    J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germ tube formation from zonal rotor fractions of Candida albicans.
    Chaffin WL; Sogin SJ
    J Bacteriol; 1976 May; 126(2):771-6. PubMed ID: 770454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid synthesis during reinitiation of growth from stationary phase cultures of Candida albicans.
    Ballmann GE; Caffin WL
    Mycopathologia; 1979 Mar; 67(1):39-43. PubMed ID: 377085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The production and growth characteristics of yeast and mycelial forms of Candida albicans in continuous culture.
    Shepherd MG; Sullivan PA
    J Gen Microbiol; 1976 Apr; 93(2):361-70. PubMed ID: 6622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of cytoplasmic proteins during yeast bud and germ tube formation in Candida albicans.
    Brown LA; Chaffin WL
    Can J Microbiol; 1981 Jun; 27(6):580-5. PubMed ID: 7020895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Starvation and germ tube formation in the exponential phase Candida albicans.
    Cho T; Hamatake H; Kaminishi H; Kuroki A; Suehara T; Suehara Y; Sakima T; Hagihara Y; Watanabe K
    Fukuoka Shika Daigaku Gakkai Zasshi; 1989; 16(4):510-21. PubMed ID: 2562099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.