BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 6369399)

  • 21. Vectors allowing amplified expression of the Saccharomyces cerevisiae Gal3p-Gal80p-Gal4p transcription switch: applications to galactose-regulated high-level production of proteins.
    Sil AK; Xin P; Hopper JE
    Protein Expr Purif; 2000 Mar; 18(2):202-12. PubMed ID: 10686151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription: a mechanism for short-term memory.
    Ptashne M
    Curr Biol; 2008 Jan; 18(1):R25-7. PubMed ID: 18177708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport].
    Sambuk EV; Alenin VV; Kozhin SA
    Genetika; 1985 Sep; 21(9):1449-54. PubMed ID: 3905510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in Saccharomyces cerevisiae.
    Ruhela A; Verma M; Edwards JS; Bhat PJ; Bhartiya S; Venkatesh KV
    FEBS Lett; 2004 Oct; 576(1-2):119-26. PubMed ID: 15474022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Digital quantitative measurements of gene expression.
    Mikkilineni V; Mitra RD; Merritt J; DiTonno JR; Church GM; Ogunnaike B; Edwards JS
    Biotechnol Bioeng; 2004 Apr; 86(2):117-24. PubMed ID: 15052631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transient responses and adaptation to steady state in a eukaryotic gene regulation system.
    Braun E; Brenner N
    Phys Biol; 2004 Jun; 1(1-2):67-76. PubMed ID: 16204824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae.
    Ueda Y; Oshima Y
    Mol Gen Genet; 1975; 136(3):255-9. PubMed ID: 16094976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Transcriptional regulation of yeast genes for galactose metabolism].
    Fukasawa T; Nogi Y; Tajima M
    Tanpakushitsu Kakusan Koso; 1985 Dec; 30(14 Suppl):1491-502. PubMed ID: 3914656
    [No Abstract]   [Full Text] [Related]  

  • 29. Nucleotide sequence of the PHO81 gene involved in the regulation of the repressible acid phosphatase gene in Saccharomyces cerevisiae.
    Coche T; Prozzi D; Legrain M; Hilger F; Vandenhaute J
    Nucleic Acids Res; 1990 Apr; 18(8):2176. PubMed ID: 2186378
    [No Abstract]   [Full Text] [Related]  

  • 30. Transcriptional and post-transcriptional control of PHO8 expression by PHO regulatory genes in Saccharomyces cerevisiae.
    Kaneko Y; Tamai Y; Toh-e A; Oshima Y
    Mol Cell Biol; 1985 Jan; 5(1):248-52. PubMed ID: 2984552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential regulation of the active and inactive forms of Saccharomyces cerevisiae acid phosphatase.
    Schweingruber AM; Schweingruber ME
    Mol Gen Genet; 1982; 187(1):107-11. PubMed ID: 6761540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations in the pho80 gene confer permeability to 5'-mononucleotides in Saccharomyces cerevisiae.
    Bisson LF; Thorner J
    Genetics; 1982 Nov; 102(3):341-59. PubMed ID: 6293915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulated expression of a human interferon gene in yeast: control by phosphate concentration or temperature.
    Kramer RA; DeChiara TM; Schaber MD; Hilliker S
    Proc Natl Acad Sci U S A; 1984 Jan; 81(2):367-70. PubMed ID: 6320183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of gene-regulation pathways using local causal search.
    Yoo C; Cooper GF
    Proc AMIA Symp; 2002; ():914-8. PubMed ID: 12463958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systems approaches applied to the study of Saccharomyces cerevisiae and Halobacterium sp.
    Weston AD; Baliga NS; Bonneau R; Hood L
    Cold Spring Harb Symp Quant Biol; 2003; 68():345-57. PubMed ID: 15338636
    [No Abstract]   [Full Text] [Related]  

  • 37. Complex networks of interactions connect genes to phenotypes.
    Cornish-Bowden A; Cárdenas ML
    Trends Biochem Sci; 2001 Aug; 26(8):463-5. PubMed ID: 11504611
    [No Abstract]   [Full Text] [Related]  

  • 38. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae.
    Bostian KA; Lemire JM; Halvorson HO
    Mol Cell Biol; 1983 May; 3(5):839-53. PubMed ID: 6346058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular biosensing system for discovery of protein synthesis inhibitors with an electrochemical phosphate modulator to regulate the acid phosphatase gene expression of Saccharomyces cerevisiae.
    Haruyama T; Kobatake E; Aizawa M
    Biosens Bioelectron; 2002 Mar; 17(3):209-15. PubMed ID: 11839474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation of regulatory mutants in Saccharomyces cerevisiae.
    Greer H; Fink GR
    Methods Cell Biol; 1975; 11():247-72. PubMed ID: 1102851
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.