BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 6369851)

  • 1. Yeast ribosome core particles deficient in acidic proteins L44 and L45 and their activity in reconstitution experiments.
    Paleń E; Jakubowicz T; Gasior E
    Acta Biochim Pol; 1983; 30(3-4):345-53. PubMed ID: 6369851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Use of gene fusion in the study of the interaction of ribosomal protein L45 with the Saccharomyces cerevisiae ribosome].
    Santana-Román H; Zinker-Ruzal S
    Rev Latinoam Microbiol; 1993; 35(4):415-22. PubMed ID: 8066334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of cyclic AMP-independent protein kinases in the modification of yeast ribosomal proteins in vivo.
    Kudlicki W; Szyszka R; Grankowski N; Gasior E
    Acta Biochim Pol; 1981; 28(1):51-9. PubMed ID: 6269337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of yeast elongation factor 3 with polynucleotides, ribosomal RNA and ribosomal subunits.
    Kovalchuke O; Chakraburtty K
    Indian J Biochem Biophys; 1995 Dec; 32(6):336-42. PubMed ID: 8714201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vivo and in vitro phosphorylation of yeast ribosomal proteins.
    Grankowski N; Gasior E
    Acta Biochim Pol; 1975; 22(1):45-56. PubMed ID: 1093343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of phosphorylation on the affinity of acidic proteins from Saccharomyces cerevisiae for the ribosomes.
    Sánchez-Madrid F; Vidales FJ; Ballesta JP
    Eur J Biochem; 1981 Mar; 114(3):609-13. PubMed ID: 6786876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of ribosomal proteins during differentiation of Saccharomyces cerevisiae.
    Szyszka R; Gasior E
    Acta Biochim Pol; 1984; 31(4):375-82. PubMed ID: 6099944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional role of acidic ribosomal proteins. Interchangeability of proteins from bacterial and eukaryotic cells.
    Sánchez-Madrid F; Vidales FJ; Ballesta JP
    Biochemistry; 1981 May; 20(11):3263-6. PubMed ID: 6113843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoprotein phosphatase from yeast and its ribosomal substrate.
    Paleń E; Gyankowski N; Gasioy E
    Acta Biochim Pol; 1983; 30(2):165-73. PubMed ID: 6306965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acidic ribosomal proteins from eukaryotic cells. Effect on ribosomal functions.
    Sánchez-Madrid F; Reyes R; Conde P; Ballesta JP
    Eur J Biochem; 1979 Aug; 98(2):409-16. PubMed ID: 114391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic ATPase activity of yeast peptide chain elongation factor 3(EF-3) and its direct interaction with various nucleotides.
    Miyazaki M; Uritani M; Kagiyama H
    Nucleic Acids Symp Ser; 1986; (17):171-4. PubMed ID: 2951656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain.
    Helgstrand M; Mandava CS; Mulder FA; Liljas A; Sanyal S; Akke M
    J Mol Biol; 2007 Jan; 365(2):468-79. PubMed ID: 17070545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis.
    Remacha M; Santos C; Bermejo B; Naranda T; Ballesta JP
    J Biol Chem; 1992 Jun; 267(17):12061-7. PubMed ID: 1601875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ria1p (Ynl163c), a protein similar to elongation factors 2, is involved in the biogenesis of the 60S subunit of the ribosome in Saccharomyces cerevisiae.
    Bécam AM; Nasr F; Racki WJ; Zagulski M; Herbert CJ
    Mol Genet Genomics; 2001 Nov; 266(3):454-62. PubMed ID: 11713675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the yeast acidic ribosomal phosphoproteins using monoclonal antibodies. Proteins L44/L45 and L44' have different functional roles.
    Vilella MD; Remacha M; Ortiz BL; Mendez E; Ballesta JP
    Eur J Biochem; 1991 Mar; 196(2):407-14. PubMed ID: 1706664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acidic ribosomal stalk proteins are not required for the highly specific inactivation exerted by α-sarcin of the eukaryotic ribosome.
    Olombrada M; Rodríguez-Mateos M; Prieto D; Pla J; Remacha M; Martínez-del-Pozo A; Gavilanes JG; Ballesta JP; García-Ortega L
    Biochemistry; 2014 Mar; 53(10):1545-7. PubMed ID: 24568582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidic proteins of the large ribosomal subunit in Saccharomyces cerevisiae. Effect of phosphorylation.
    Vidales FJ; Robles MT; Ballesta JP
    Biochemistry; 1984 Jan; 23(2):390-6. PubMed ID: 6421316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome synthesis meets the cell cycle.
    Dez C; Tollervey D
    Curr Opin Microbiol; 2004 Dec; 7(6):631-7. PubMed ID: 15556036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soluble factor requirements for the Tetrahymena peptide elongation system and the ribosomal ATPase as a counterpart of yeast elongation factor 3 (EF-3).
    Miyazaki M; Kagiyama H
    J Biochem; 1990 Dec; 108(6):1001-8. PubMed ID: 2150964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, purification, and characterization of the G domain of Saccharomyces cerevisiae elongation factor 2.
    Rao S; Bodley JW
    Protein Expr Purif; 1996 Aug; 8(1):91-6. PubMed ID: 8812839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.