These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 6370109)

  • 1. Neural coding of complex sounds: speech.
    Sachs MB
    Annu Rev Physiol; 1984; 46():261-73. PubMed ID: 6370109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory nerve representation of vowels in background noise.
    Sachs MB; Voigt HF; Young ED
    J Neurophysiol; 1983 Jul; 50(1):27-45. PubMed ID: 6875649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of whispered vowels in discharge patterns of auditory-nerve fibers.
    Voigt HF; Sachs MB; Young ED
    Hear Res; 1982 Sep; 8(1):49-58. PubMed ID: 7142032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speech coding in the auditory nerve: III. Voiceless fricative consonants.
    Delgutte B; Kiang NY
    J Acoust Soc Am; 1984 Mar; 75(3):887-96. PubMed ID: 6707318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers.
    Delgutte B
    J Acoust Soc Am; 1980 Sep; 68(3):843-57. PubMed ID: 7419820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of the roles of temporal and place coding of frequency in speech discrimination.
    Moller AR
    Acta Otolaryngol; 1999; 119(4):424-30. PubMed ID: 10445056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation of stop consonants in the discharge patterns of auditory-nerve fibers.
    Miller MI; Sachs MB
    J Acoust Soc Am; 1983 Aug; 74(2):502-17. PubMed ID: 6619427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of "lower-spontaneous-rate" auditory-nerve fibers to speech syllables presented in noise. I: General characteristics.
    Silkes SM; Geisler CD
    J Acoust Soc Am; 1991 Dec; 90(6):3122-39. PubMed ID: 1787250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of vowel context on the recognition of initial and medial consonants by cochlear implant users.
    Donaldson GS; Kreft HA
    Ear Hear; 2006 Dec; 27(6):658-77. PubMed ID: 17086077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory brainstem correlates of perceptual timing deficits.
    Johnson KL; Nicol TG; Zecker SG; Kraus N
    J Cogn Neurosci; 2007 Mar; 19(3):376-85. PubMed ID: 17335387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perception of temporal order in vowel sequences with and without formant transitions.
    Dorman MF; Cutting JE; Raphael LJ
    J Exp Psychol Hum Percept Perform; 1975 May; 104(2):147-53. PubMed ID: 1194866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Average discharge rate representation of voice onset time in the chinchilla auditory nerve.
    Sinex DG; McDonald LP
    J Acoust Soc Am; 1988 May; 83(5):1817-27. PubMed ID: 3403796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and psychophysical correlates of temporal processes in hearing.
    Javel E; Mott JB
    Hear Res; 1988 Aug; 34(3):275-94. PubMed ID: 3049493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech Coding in the Brain: Representation of Vowel Formants by Midbrain Neurons Tuned to Sound Fluctuations.
    Carney LH; Li T; McDonough JM
    eNeuro; 2015; 2(4):. PubMed ID: 26464993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The representation of noise vocoded speech in the auditory nerve of the chinchilla: physiological correlates of the perception of spectrally reduced speech.
    Loebach JL; Wickesberg RE
    Hear Res; 2006 Mar; 213(1-2):130-44. PubMed ID: 16497455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural coding of formant-exaggerated speech in the infant brain.
    Zhang Y; Koerner T; Miller S; Grice-Patil Z; Svec A; Akbari D; Tusler L; Carney E
    Dev Sci; 2011 May; 14(3):566-81. PubMed ID: 21477195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation of input level range for the nucleus 24 cochlear implant system: speech perception performance, program preference, and loudness comfort ratings.
    James CJ; Skinner MW; Martin LF; Holden LK; Galvin KL; Holden TA; Whitford L
    Ear Hear; 2003 Apr; 24(2):157-74. PubMed ID: 12677112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspiration in fricative and nasal consonants: Properties and detection.
    Rabha S; Sarmah P; Prasanna SRM
    J Acoust Soc Am; 2019 Jul; 146(1):614. PubMed ID: 31370589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wavelet-based neural model to optimize and read out a temporal population code.
    Luvizotto A; RennĂ³-Costa C; Verschure PF
    Front Comput Neurosci; 2012; 6():21. PubMed ID: 22563314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single mechanism account of duration and rate processing via the pacemaker-accumulator and beat frequency models.
    Hartcher-O'Brien J; Brighouse C; Levitan CA
    Curr Opin Behav Sci; 2016 Apr; 8():268-275. PubMed ID: 27294175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.