These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 6370307)
1. Possible energization of K+ accumulation into metabolizing yeast by the protonmotive force. Binding correction to be applied in the calculation of the yeast membrane potential from tetraphenylphosphonium distribution. Boxman AW; Dobbelmann J; Borst-Pauwels GW Biochim Biophys Acta; 1984 Apr; 772(1):51-7. PubMed ID: 6370307 [TBL] [Abstract][Full Text] [Related]
2. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation. Bakker EP Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627 [TBL] [Abstract][Full Text] [Related]
3. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans. Prasad R; Höfer M Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329 [TBL] [Abstract][Full Text] [Related]
4. Measurement of plasma membrane potential in isolated rat hepatocytes using the lipophilic cation, tetraphenylphosphonium: correction of probe intracellular binding and mitochondrial accumulation. Saito S; Murakami Y; Miyauchi S; Kamo N Biochim Biophys Acta; 1992 Nov; 1111(2):221-30. PubMed ID: 1329961 [TBL] [Abstract][Full Text] [Related]
5. Some characteristics of tetraphenylphosphonium uptake into Saccharomyces cerevisiae. Boxman AW; Barts PW; Borst-Pauwels GW Biochim Biophys Acta; 1982 Mar; 686(1):13-8. PubMed ID: 7039677 [TBL] [Abstract][Full Text] [Related]
6. Inorganic pyrophosphate gives a membrane potential in yeast mitochondria, as measured with the permeant cation tetraphenylphosphonium. Pereira-da-Silva L; Sherman M; Lundin M; Baltscheffsky H Arch Biochem Biophys; 1993 Aug; 304(2):310-3. PubMed ID: 8394052 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution. Rugolo M; Lenaz G J Bioenerg Biomembr; 1987 Dec; 19(6):705-18. PubMed ID: 3693347 [TBL] [Abstract][Full Text] [Related]
8. Use of a lipophilic cation to monitor electrical membrane potential in the intact rat lens. Cheng Q; Lichtstein D; Russell P; Zigler JS Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):482-7. PubMed ID: 10670479 [TBL] [Abstract][Full Text] [Related]
9. Interaction of ethidium and tetraphenylphosphonium cations with Salmonella enterica cells. Mikalayeva V; Sakalauskaitė S; Daugelavičius R Medicina (Kaunas); 2017; 53(2):122-130. PubMed ID: 28462872 [TBL] [Abstract][Full Text] [Related]
11. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence. Arcangeli A; Olivotto M J Cell Physiol; 1986 Apr; 127(1):17-27. PubMed ID: 3457015 [TBL] [Abstract][Full Text] [Related]
12. Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus. Kreke B; Cypionka H Arch Microbiol; 1992; 158(3):183-7. PubMed ID: 1332637 [TBL] [Abstract][Full Text] [Related]
13. The electrochemical H+ gradient in the yeast Rhodotorula glutinis. Höfer M; Nicolay K; Robillard G J Bioenerg Biomembr; 1985 Jun; 17(3):175-82. PubMed ID: 4040135 [TBL] [Abstract][Full Text] [Related]
14. Effects of inhibitors of ion-motive ATPases on the plasma membrane potential of murine erythroleukemia cells. Arcangeli A; Del Bene MR; Becchetti A; Wanke E; Olivotto M J Membr Biol; 1992 Mar; 126(2):123-36. PubMed ID: 1534381 [TBL] [Abstract][Full Text] [Related]
15. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells. Riley RT; Norred WP; Dorner JW; Cole RJ J Toxicol Environ Health; 1985; 15(6):779-88. PubMed ID: 4057282 [TBL] [Abstract][Full Text] [Related]
16. The energetics of D-fucose transport in Saccharomyces fragilis. The influence of the protonmotive force on sugar accumulation. Van den Broek PJ; Christianse K; Van Steveninck J Biochim Biophys Acta; 1982 Nov; 692(2):231-7. PubMed ID: 7171593 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial defects in cis-diamminedichloroplatinum(II)-resistant human ovarian carcinoma cells. Andrews PA; Albright KD Cancer Res; 1992 Apr; 52(7):1895-901. PubMed ID: 1551118 [TBL] [Abstract][Full Text] [Related]
19. Permeability change in transformed mouse fibroblasts caused by ionophores, and its relationship to membrane permeabilization by exogenous ATP. Friedberg I; Weisman GA; De BK J Membr Biol; 1985; 83(3):251-9. PubMed ID: 3999123 [TBL] [Abstract][Full Text] [Related]
20. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier. Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]