These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 6370330)
1. Parasitic origins of nitrogen-mixing Rhizobium-legume symbioses. A review of the evidence. Sharifi E Biosystems; 1983-1984; 16(3-4):269-89. PubMed ID: 6370330 [TBL] [Abstract][Full Text] [Related]
2. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses? Terpolilli JJ; Hood GA; Poole PS Adv Microb Physiol; 2012; 60():325-89. PubMed ID: 22633062 [TBL] [Abstract][Full Text] [Related]
3. Molecular aspects of the energetics of nitrogen fixation in Rhizobium-legume symbioses. O'Brian MR; Maier RJ Biochim Biophys Acta; 1989 May; 974(3):229-46. PubMed ID: 2659085 [No Abstract] [Full Text] [Related]
4. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. Kouchi H; Imaizumi-Anraku H; Hayashi M; Hakoyama T; Nakagawa T; Umehara Y; Suganuma N; Kawaguchi M Plant Cell Physiol; 2010 Sep; 51(9):1381-97. PubMed ID: 20660226 [TBL] [Abstract][Full Text] [Related]
5. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. Mathesius U J Plant Physiol; 2022 Sep; 276():153765. PubMed ID: 35952452 [TBL] [Abstract][Full Text] [Related]
9. The effect of ammonium nitrate on the synthesis of nitrogenase and the concentration of leghemoglobin in pea root nodules induced by Rhizobium leguminosarum. Bisseling T; van den Bos RC; van Kammen A Biochim Biophys Acta; 1978 Feb; 539(1):1-11. PubMed ID: 623788 [TBL] [Abstract][Full Text] [Related]
10. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes. Luciński R; Polcyn W; Ratajczak L Acta Biochim Pol; 2002; 49(2):537-46. PubMed ID: 12362996 [TBL] [Abstract][Full Text] [Related]
11. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots. Ibáñez F; Wall L; Fabra A J Exp Bot; 2017 Apr; 68(8):1905-1918. PubMed ID: 27756807 [TBL] [Abstract][Full Text] [Related]
12. How inefficient rhizobia prolong their existence within nodules. Schumpp O; Deakin WJ Trends Plant Sci; 2010 Apr; 15(4):189-95. PubMed ID: 20117958 [TBL] [Abstract][Full Text] [Related]
13. Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis. Debellé F; Moulin L; Mangin B; Dénarié J; Boivin C Acta Biochim Pol; 2001; 48(2):359-65. PubMed ID: 11732607 [TBL] [Abstract][Full Text] [Related]
16. Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis. Santos R; Hérouart D; Puppo A; Touati D Mol Microbiol; 2000 Nov; 38(4):750-9. PubMed ID: 11115110 [TBL] [Abstract][Full Text] [Related]
17. Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Day DA; Poole PS; Tyerman SD; Rosendahl L Cell Mol Life Sci; 2001 Jan; 58(1):61-71. PubMed ID: 11229817 [TBL] [Abstract][Full Text] [Related]
18. Legumes versus rhizobia: a model for ongoing conflict in symbiosis. Sachs JL; Quides KW; Wendlandt CE New Phytol; 2018 Sep; 219(4):1199-1206. PubMed ID: 29845625 [TBL] [Abstract][Full Text] [Related]
19. Lipochitooligosaccharides and legume Rhizobium symbiosis--a new concept. Chimote V; Kashyap LR Indian J Exp Biol; 2001 May; 39(5):401-9. PubMed ID: 11510121 [TBL] [Abstract][Full Text] [Related]
20. Development of the nitrogen-fixing and protein-synthesizing apparatus of bacteroids in pea root nodules. Bisseling T; van den Bos RC; Weststrate MW; Hakkaart MJ; van Kammen A Biochim Biophys Acta; 1979 May; 562(3):515-26. PubMed ID: 454614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]