These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6370717)

  • 1. Transport of nutrients in yeast protoplasts.
    Kotyk A
    Experientia Suppl; 1983; 46():209-12. PubMed ID: 6370717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of glucose-stimulated transport in yeast protoplasts.
    Kotyk A; Michaljanicová D; Struzinský R; Baryshnikova LM; Sychrová H
    Folia Microbiol (Praha); 1985; 30(2):110-6. PubMed ID: 2860054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of sugars in phosphate transport in baker's yeast.
    Knotková A; Kotyk A
    Folia Microbiol (Praha); 1972; 17(4):251-60. PubMed ID: 4560645
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation into the feasibility of using yeast protoplasts to study the ion transport properties of the plasma membrane.
    Theuvenet AP; Bindels RJ
    Biochim Biophys Acta; 1980 Jul; 599(2):587-95. PubMed ID: 6996722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport kinetics of 6-deoxy-D-glucose in Candida parapsilosis.
    Kotyk A; Michaljanicová D
    Folia Microbiol (Praha); 1978; 23(1):18-26. PubMed ID: 23984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic phosphate uptake by protoplasts and whole cells of yeast Candida tropicalis: absence of high affinity transport system in protoplasts.
    Jeanjean R; Bedu S; Attia A; Rocca-Serra J
    Biochimie; 1982 Jan; 64(1):75-8. PubMed ID: 7066409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane transport in an osmotically fragile mutant of Saccharomyces cerevisiae.
    Kotyk A; Venkov P; Dvoráková M
    Yeast; 1988 Dec; 4(4):241-7. PubMed ID: 2851235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection of strains capable of utilizing D-xylose and cellobiose to produce ethanol by electric field-induced protoplast fusion.
    Wang Y; Song L; Zhou Y
    Chin J Biotechnol; 1992; 8(1):51-6. PubMed ID: 1457722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Protoplasts from the yeast Rhodotorula gracilis. II. Physiological and transport properties (author's transl)].
    von Hedenström M; Höfer M
    Arch Mikrobiol; 1974 Jun; 98(1):59-67. PubMed ID: 4834631
    [No Abstract]   [Full Text] [Related]  

  • 11. Enhancement of xylose uptake in 2-deoxyglucose tolerant mutant of Saccharomyces cerevisiae.
    Kahar P; Taku K; Tanaka S
    J Biosci Bioeng; 2011 May; 111(5):557-63. PubMed ID: 21257343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some physiological observations on the uptake of D-glucose and 2-deoxy-D-glucose by starving and exponentially-growing yeasts.
    Barnett JA; Sims AP
    Arch Microbiol; 1976 Dec; 111(1-2):185-92. PubMed ID: 797335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of derepression of amino acids transport in Candida.
    Verma RS; Prasad R
    Biochem Int; 1983 Dec; 7(6):707-17. PubMed ID: 6385985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of 2-deoxy-D-glucose inhibition of cell-wall polysaccharide and glycoprotein biosyntheses in Saccharomyces cerevisiae.
    Krátký Z; Biely P; Bauer S
    Eur J Biochem; 1975 Jun; 54(2):459-67. PubMed ID: 1100378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of 2-deoxy-D-glucose and adenine with phosphate anion uptake in yeast.
    Kotyk A
    Folia Microbiol (Praha); 1992; 37(6):401-3. PubMed ID: 1296923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of 4-deoxy- and 6-deoxy-D-glucose in baker's yeast.
    Kotyk A; Michaljanicová D; Veres K; Soukupová V
    Folia Microbiol (Praha); 1975; 20(6):496-503. PubMed ID: 287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of xylose incubation on the glucose transport system in Saccharomyces cerevisiae.
    Schuddemat J; Van den Broek PJ; Van Steveninck J
    Biochim Biophys Acta; 1986 Oct; 861(3):489-93. PubMed ID: 3533151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segregation of altered parental properties in fusions between Saccharomyces cerevisiae and the D-xylose fermenting yeasts Candida shehatae and Pichia stipitis.
    Gupthar AS
    Can J Microbiol; 1992 Dec; 38(12):1233-7. PubMed ID: 1288841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of acyclic polyols in Saccharomyces cerevisiae.
    Canh DS; Horák J; Kotyk A; Ríhová L
    Folia Microbiol (Praha); 1975; 20(4):320-5. PubMed ID: 240765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae.
    Stambuk BU; De Araujo PS; Panek AD; Serrano R
    Eur J Biochem; 1996 May; 237(3):876-81. PubMed ID: 8647137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.