BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 6371014)

  • 21. S. cerevisiae TFIIIB is the transcription initiation factor proper of RNA polymerase III, while TFIIIA and TFIIIC are assembly factors.
    Kassavetis GA; Braun BR; Nguyen LH; Geiduschek EP
    Cell; 1990 Jan; 60(2):235-45. PubMed ID: 2404611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter.
    Murphy S; Di Liegro C; Melli M
    Cell; 1987 Oct; 51(1):81-7. PubMed ID: 3652210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The 5'-flanking sequence of yeast tRNA(Leu3) genes enhances the rate of transcription from stable pre-initiation complexes.
    Raymond GJ; Johnson JD
    Nucleic Acids Res; 1987 Dec; 15(23):9881-94. PubMed ID: 3320957
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro transcription of a silkworm 5S RNA gene requires an upstream signal.
    Morton DG; Sprague KU
    Proc Natl Acad Sci U S A; 1984 Sep; 81(17):5519-22. PubMed ID: 6089209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription factor binding is limited by the 5'-flanking regions of a Drosophila tRNAHis gene and a tRNAHis pseudogene.
    Cooley L; Schaack J; Burke DJ; Thomas B; Söll D
    Mol Cell Biol; 1984 Dec; 4(12):2714-22. PubMed ID: 6570190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlations between transcription of a yeast tRNA gene and transcription factor-DNA interactions.
    Stillman DJ; Sivertsen AL; Zentner PG; Geiduschek EP
    J Biol Chem; 1984 Jun; 259(12):7955-62. PubMed ID: 6234307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dispersed tyrosine tRNA gene from Xenopus laevis with high transcriptional activity in vitro.
    Gouilloud E; Clarkson SG
    J Biol Chem; 1986 Jan; 261(1):486-94. PubMed ID: 2416752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system.
    Dingermann T; Frank-Stoll U; Werner H; Wissmann A; Hillen W; Jacquet M; Marschalek R
    EMBO J; 1992 Apr; 11(4):1487-92. PubMed ID: 1563352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcription of eucaryotic tRNA1met and 5SRNA genes by RNA polymerase III is blocked by base mismatches in the intragenic control regions.
    Sullivan MA; Folk WR
    Nucleic Acids Res; 1987 Mar; 15(5):2059-68. PubMed ID: 3645544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription of a Drosophila tRNAArg gene in yeast extract: 5'-flanking sequence dependence for transcription in a heterologous system.
    Schaack J; Söll D
    Nucleic Acids Res; 1985 Apr; 13(8):2803-14. PubMed ID: 3889849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo modulation of yeast tRNA gene expression by 5'-flanking sequences.
    Raymond KC; Raymond GJ; Johnson JD
    EMBO J; 1985 Oct; 4(10):2649-56. PubMed ID: 3902471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific 5' flanking sequences are required for faithful initiation of in vitro transcription of the ovalbumin gene.
    Tsai SY; Tsai MJ; O'Malley BW
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):879-83. PubMed ID: 6262780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of 5'-flanking sequence on 4.5SI RNA gene transcription by RNA polymerase III.
    Gogolevskaya IK; Stasenko DV; Tatosyan KA; Kramerov DA
    Genome; 2018 May; 61(5):367-370. PubMed ID: 29394492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III.
    Devine SE; Boeke JD
    Genes Dev; 1996 Mar; 10(5):620-33. PubMed ID: 8598291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequence context effects on oligo(dT) termination signal recognition by Saccharomyces cerevisiae RNA polymerase III.
    Braglia P; Percudani R; Dieci G
    J Biol Chem; 2005 May; 280(20):19551-62. PubMed ID: 15788403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the promoter of the large ribosomal RNA gene in yeast mitochondria and separation of mitochondrial RNA polymerase into two different functional components.
    Schinkel AH; Groot Koerkamp MJ; Van der Horst GT; Touw EP; Osinga KA; Van der Bliek AM; Veeneman GH; Van Boom JH; Tabak HF
    EMBO J; 1986 May; 5(5):1041-7. PubMed ID: 3522220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A multicomponent mitochondrial RNA polymerase from Saccharomyces cerevisiae.
    Winkley CS; Keller MJ; Jaehning JA
    J Biol Chem; 1985 Nov; 260(26):14214-23. PubMed ID: 3902826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lethal mutations in a yeast U6 RNA gene B block promoter element identify essential contacts with transcription factor-IIIC.
    Kaiser MW; Brow DA
    J Biol Chem; 1995 May; 270(19):11398-405. PubMed ID: 7744776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5'-flanking sequences can dramatically influence 4.5SH RNA gene transcription by RNA-polymerase III.
    Koval AP; Kramerov DA
    Gene; 2009 Oct; 446(2):75-80. PubMed ID: 19619622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleotide sequence and transcription of a human glycine tRNAGCC gene and nearby pseudogene.
    Pirtle IL; Shortridge RD; Pirtle RM
    Gene; 1986; 43(1-2):155-67. PubMed ID: 3019833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.