BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6371018)

  • 1. Specific early-G1 blocks accompanied with stringent response in Saccharomyces cerevisiae lead to growth arrest in resting state similar to the G0 of higher eucaryotes.
    Iida H; Yahara I
    J Cell Biol; 1984 Apr; 98(4):1185-93. PubMed ID: 6371018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae.
    Plesset J; Ludwig JR; Cox BS; McLaughlin CS
    J Bacteriol; 1987 Feb; 169(2):779-84. PubMed ID: 3542970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A temperature-sensitive N-glycosylation mutant of S. cerevisiae that behaves like a cell-cycle mutant.
    Klebl F; Huffaker T; Tanner W
    Exp Cell Res; 1984 Feb; 150(2):309-13. PubMed ID: 6363106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae.
    Rivin CJ; Fangman WL
    J Cell Biol; 1980 Apr; 85(1):96-107. PubMed ID: 6988443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Durable synthesis of high molecular weight heat shock proteins in G0 cells of the yeast and other eucaryotes.
    Iida H; Yahara I
    J Cell Biol; 1984 Jul; 99(1 Pt 1):199-207. PubMed ID: 6429154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E.
    Danaie P; Altmann M; Hall MN; Trachsel H; Helliwell SB
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):135-41. PubMed ID: 10229668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In budding yeast, reactive oxygen species induce both RAS-dependent and RAS-independent cell cycle-specific arrest.
    Wanke V; Accorsi K; Porro D; Esposito F; Russo T; Vanoni M
    Mol Microbiol; 1999 May; 32(4):753-64. PubMed ID: 10361279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bifunctional gene product involved in two phases of the yeast cell cycle.
    Piggott JR; Rai R; Carter BL
    Nature; 1982 Jul; 298(5872):391-3. PubMed ID: 7045699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estrogen can regulate the cell cycle in the early G1 phase of yeast by increasing the amount of adenylate cyclase mRNA.
    Tanaka S; Hasegawa S; Hishinuma F; Kurata S
    Cell; 1989 May; 57(4):675-81. PubMed ID: 2541920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elongation and shortening of time required for entry into S phase after release from G1 and G0 arrests in temperature-sensitive mutants of rat 3Y1 cells.
    Zaitsu H; Tanaka H; Kimura G
    Exp Cell Res; 1987 Jun; 170(2):310-21. PubMed ID: 2439359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serum-dependent regulation of proliferation of cultured rat fibroblasts in G1 and G2 phases.
    Zaitsu H; Kimura G
    Exp Cell Res; 1988 Jan; 174(1):146-55. PubMed ID: 3335221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A probe into nuclear events during the cell cycle of Saccharomyces cerevisiae: studies of folded chromosomes in cdc mutants which arrest in G1.
    PiƱon R
    Chromosoma; 1979 Jan; 70(3):337-52. PubMed ID: 371932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth and the cell cycle of the yeast Saccharomyces cerevisiae. II. Relief of cell-cycle constraints allows accelerated cell divisions.
    Singer RA; Johnston GC
    Exp Cell Res; 1983 Nov; 149(1):15-26. PubMed ID: 6357813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular syntheses in the cell cycle mutant cdc25 of budding yeast.
    Martegani E; Vanoni M; Baroni M
    Eur J Biochem; 1984 Oct; 144(2):205-10. PubMed ID: 6386464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bud formation by the yeast Saccharomyces cerevisiae is directly dependent on "start".
    Singer RA; Bedard DP; Johnston GC
    J Cell Biol; 1984 Feb; 98(2):678-84. PubMed ID: 6363427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein misfolding and temperature up-shift cause G1 arrest via a common mechanism dependent on heat shock factor in Saccharomycescerevisiae.
    Trotter EW; Berenfeld L; Krause SA; Petsko GA; Gray JV
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7313-8. PubMed ID: 11416208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The possible functional significance of phosphatidylinositol in G1 arrest of Saccharomyces cerevisiae.
    Dudani AK; Trivedi A; Prasad R
    FEBS Lett; 1983 Mar; 153(1):34-6. PubMed ID: 6337878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed field gel electrophoresis labeling method to study the pattern of Saccharomyces cerevisiae chromosomal DNA synthesis during the G1/S phase of the cell cycle.
    Jong AY; Wang B; Zhang SQ
    Anal Biochem; 1995 May; 227(1):32-9. PubMed ID: 7668389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the G1-G0 transition and G0 protein synthesis by cyclic AMP in Saccharomyces cerevisiae.
    Shin DY; Uno I; Ishikawa T
    Curr Genet; 1987; 12(8):577-82. PubMed ID: 2844421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a labile protein involved in the G1-to-S transition in Saccharomyces cerevisiae.
    Popolo L; Alberghina L
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):120-4. PubMed ID: 6364132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.