These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6371832)

  • 1. Androgenic effects upon prostatic epithelium are mediated via trophic influences from stroma.
    Cunha GR
    Prog Clin Biol Res; 1984; 145():81-102. PubMed ID: 6371832
    [No Abstract]   [Full Text] [Related]  

  • 2. Paracrine regulation of apoptosis by steroid hormones in the male and female reproductive system.
    Kurita T; Wang YZ; Donjacour AA; Zhao C; Lydon JP; O'Malley BW; Isaacs JT; Dahiya R; Cunha GR
    Cell Death Differ; 2001 Feb; 8(2):192-200. PubMed ID: 11313721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells.
    Gao J; Arnold JT; Isaacs JT
    Cancer Res; 2001 Jul; 61(13):5038-44. PubMed ID: 11431338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steroid receptors in prostate cancer tissues and cells: pathophysiology, problems in methodology, clinical value and controversial questions.
    Pavone-Macaluso M; Carruba G; Castagnetta L
    Arch Esp Urol; 1994 Mar; 47(2):189-201. PubMed ID: 8002681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor-beta is an autocrine mitogen for a novel androgen-responsive murine prostatic smooth muscle cell line, PSMC1.
    Salm SN; Koikawa Y; Ogilvie V; Tsujimura A; Coetzee S; Moscatelli D; Moore E; Lepor H; Shapiro E; Sun TT; Wilson EL
    J Cell Physiol; 2000 Dec; 185(3):416-24. PubMed ID: 11056012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Androgen and prostatic stroma.
    Niu YJ; Ma TX; Zhang J; Xu Y; Han RF; Sun G
    Asian J Androl; 2003 Mar; 5(1):19-26. PubMed ID: 12646998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model.
    Bonkhoff H; Remberger K
    Prostate; 1996 Feb; 28(2):98-106. PubMed ID: 8604398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesenchymal-epithelial interactions during androgen-induced development of the prostate.
    Cunha GR
    Prog Clin Biol Res; 1985; 171():15-24. PubMed ID: 3885244
    [No Abstract]   [Full Text] [Related]  

  • 9. The prostate as an endocrine organ: androgens and estrogens.
    Ekman P
    Prostate Suppl; 2000; 10():14-8. PubMed ID: 11056488
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of canine basal cells in prostatic post natal development, induction of hyperplasia, sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I; Schelling KH; Adams JY; Merk FB; Alroy J
    Prostate; 2001 May; 47(3):149-63. PubMed ID: 11351344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of canine basal cells in postnatal prostatic development, induction of hyperplasia, and sex hormone-stimulated growth; and the ductal origin of carcinoma.
    Leav I; Schelling KH; Adams JY; Merk FB; Alroy J
    Prostate; 2001 Aug; 48(3):210-24. PubMed ID: 11494337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline.
    Hara T; Nakamura K; Araki H; Kusaka M; Yamaoka M
    Cancer Res; 2003 Sep; 63(17):5622-8. PubMed ID: 14500404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis.
    Lin Y; Liu G; Zhang Y; Hu YP; Yu K; Lin C; McKeehan K; Xuan JW; Ornitz DM; Shen MM; Greenberg N; McKeehan WL; Wang F
    Development; 2007 Feb; 134(4):723-34. PubMed ID: 17215304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Androgens, androgen receptors, antiandrogens and the treatment of prostate cancer.
    Griffiths K; Morton MS; Nicholson RI
    Eur Urol; 1997; 32 Suppl 3():24-40. PubMed ID: 9267783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an androgen receptor-null model for identifying the initiation site for androgen stimulation of proliferation and suppression of programmed (apoptotic) death of PC-82 human prostate cancer cells.
    Gao J; Isaacs JT
    Cancer Res; 1998 Aug; 58(15):3299-306. PubMed ID: 9699659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hormone receptors in human prostate].
    Shinohara N; Suzuki S; Nonomura K; Koyanagi T
    Nihon Rinsho; 2002 Dec; 60 Suppl 11():12-6. PubMed ID: 12599537
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process.
    Craft N; Chhor C; Tran C; Belldegrun A; DeKernion J; Witte ON; Said J; Reiter RE; Sawyers CL
    Cancer Res; 1999 Oct; 59(19):5030-6. PubMed ID: 10519419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physiopathological aspects of the treatment of benign prostatic hypertrophy. Role of prostatic stroma and estrogens].
    Solè-Balcells F
    J Urol (Paris); 1993; 99(6):303-6. PubMed ID: 7516373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceptor sites: genomic sites for androgenic regulation of prostatic growth.
    Rennie PS
    Prog Clin Biol Res; 1987; 239():189-203. PubMed ID: 3309955
    [No Abstract]   [Full Text] [Related]  

  • 20. Age-dependent loss of sensitivity of female urogenital sinus to androgenic conditions as a function of the epithelia-stromal interaction in mice.
    Cunha GR
    Endocrinology; 1975 Sep; 97(3):665-73. PubMed ID: 1175513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.