These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 6372861)

  • 41. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast. "Chemical proofreading" of Thr-tRNA Val by valyl-tRNA synthetase studied with modified tRNA Val and amino acid analogues.
    Igloi GL; von der Haar F; Cramer F
    Biochemistry; 1977 Apr; 16(8):1696-702. PubMed ID: 322705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anticodon-dependent aminoacylation of a noncognate tRNA with isoleucine, valine, and phenylalanine in vivo.
    Pallanck L; Schulman LH
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3872-6. PubMed ID: 2023934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase.
    Glasfeld E; Landro JA; Schimmel P
    Biochemistry; 1996 Apr; 35(13):4139-45. PubMed ID: 8672449
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aminoacylation of coenzyme A and pantetheine by aminoacyl-tRNA synthetases: possible link between noncoded and coded peptide synthesis.
    Jakubowski H
    Biochemistry; 1998 Apr; 37(15):5147-53. PubMed ID: 9548745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli.
    Jakubowski H
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4504-8. PubMed ID: 2191291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Specific modification of isoleucyl transfer ribonucleic acid synthetase by pyridoxal 5'-phosphate.
    Piszkiewicz D; Duval J; Rostas S
    Biochemistry; 1977 Aug; 16(16):3538-43. PubMed ID: 19052
    [No Abstract]   [Full Text] [Related]  

  • 47. A comparative study of sulfhydryl groups required for the catalytic activity of gramicidin S synthetase and isoleucyl tRNA synthetase.
    Kanda M; Hori K; Kurotsu T; Miura S; Saito Y
    J Biochem; 1984 Sep; 96(3):701-11. PubMed ID: 6389530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Mechanism of functioning of aminoacyl-tRNA-synthetases].
    Malygin EG; Kiselev LL
    Mol Biol (Mosk); 1984; 18(5):1264-86. PubMed ID: 6390174
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Seryl-, threonyl-, valyl-, and isoleucyl-tRNA synthetases from baker's yeast: role of the 3'-terminal adenosine in the dynamic recognition of tRNA.
    von der Haar F; Cramer F
    Biochemistry; 1978 Jul; 17(15):3139-45. PubMed ID: 359040
    [No Abstract]   [Full Text] [Related]  

  • 50. [A study of the complex-formation of phenylalanyl-tRNA-synthetase from Escherichia coli using the tRNA-Phe method of small-angle x-ray scattering].
    Tuzikov FV; Zinov'ev VV; Vavilin VI; Malygin EG; Ankilova VN
    Mol Biol (Mosk); 1988; 22(6):1623-31. PubMed ID: 3075265
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of anticooperative binding of phenylalanyl-tRNAPhe and tRNAPhe to phenylalanyl-tRNA synthetase of Escherichia coli K10.
    Holler E
    Biochemistry; 1980 Apr; 19(7):1397-402. PubMed ID: 6992864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic mechanism of phenylalanyl-tRNA synthetase of Escherichia coli K10. Different properties of native and photochemically cross-linked tRNAPhe can be explained in the light of tRNA conformer equilibria.
    Holler E; Baltzinger M; Favre A
    Biochemistry; 1981 Mar; 20(5):1139-47. PubMed ID: 7013785
    [No Abstract]   [Full Text] [Related]  

  • 53. Kinetics of acyl transfer ribonucleic acid complexes of Escherichia coli phenylalanyl-tRNA synthetase. A conformational change is rate limiting in catalysis.
    Baltzinger M; Holler E
    Biochemistry; 1982 May; 21(10):2460-7. PubMed ID: 7046786
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isoleucyl transfer ribonucleic acid synthetase. Competitive inhibition with respect to transfer ribonucleic acid by blue dextran.
    Moe JG; Piszkiewicz D
    Biochemistry; 1979 Jun; 18(13):2810-4. PubMed ID: 383141
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B. A rapid kinetic investigation of the L-isoleucine-activating reaction.
    Holler E; Calvin M
    Biochemistry; 1972 Sep; 11(20):3741-52. PubMed ID: 4342025
    [No Abstract]   [Full Text] [Related]  

  • 56. Control of downstream amplification in the ilvEDA operon in isoleucyl-, valyl-, and leucyl-tRNA synthetase mutants of Escherichia coli K-12.
    Whittaker JJ; Jackson JH
    Biochem Biophys Res Commun; 1978 Jul; 83(1):226-33. PubMed ID: 358976
    [No Abstract]   [Full Text] [Related]  

  • 57. Incomplete aminoacylation of tRNALeu catalyzed in vitro by leucyl-tRNA synthetase from Escherichia coli B.
    Jakubowski H
    Biochim Biophys Acta; 1978 Apr; 518(2):345-50. PubMed ID: 26406
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CP1 domain in Escherichia coli leucyl-tRNA synthetase is crucial for its editing function.
    Chen JF; Guo NN; Li T; Wang ED; Wang YL
    Biochemistry; 2000 Jun; 39(22):6726-31. PubMed ID: 10828991
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increased isoleucine acceptance by sulfur-deficient transfer RNA from Escherichia coli.
    Harris CL; Marashi F; Titchener EB
    Nucleic Acids Res; 1976 Aug; 3(8):2129-42. PubMed ID: 787931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Competition of aminoacyl-tRNA synthetases for tRNA ensures the accuracy of aminoacylation.
    Sherman JM; Rogers MJ; Söll D
    Nucleic Acids Res; 1992 Jun; 20(11):2847-52. PubMed ID: 1377381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.