These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 6373027)
1. A biochemical and electron microscopic study of changes in the content of cytochrome P-450 in rat livers after cessation of treatment with phenobarbital, beta-naphtoflavone or 3-methylcholanthrene. Masaki R; Matsuura S; Tashiro Y Cell Struct Funct; 1984 Mar; 9(1):53-66. PubMed ID: 6373027 [TBL] [Abstract][Full Text] [Related]
2. Different patterns of benzo[a]pyrene metabolism of purified cytochromes P-450 from methylcholanthrene, beta-naphthoflavone and phenobarbital treated rats. Gozukara EM; Guengerich FP; Miller H; Gelboin HV Carcinogenesis; 1982; 3(2):129-33. PubMed ID: 6279326 [TBL] [Abstract][Full Text] [Related]
3. Immunological and enzymatic comparison of hepatic cytochrome P-450 fractions from phenobarbital-, 3-methylcholanthrene-, beta-naphthoflavone- and 2,3,7,8- tetrachlorodibenzo-p-dioxin-treated rats. le Provost E; Cresteil T; Columelli S; Leroux JP Biochem Pharmacol; 1983 Jun; 32(11):1673-82. PubMed ID: 6870906 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of sex-specific forms of cytochrome P-450 in rat liver is transiently suppressed by hepatic monooxygenase inducers. Emi Y; Omura T J Biochem; 1988 Jul; 104(1):40-3. PubMed ID: 3220829 [TBL] [Abstract][Full Text] [Related]
5. Effects of 3-methylcholanthrene, beta-naphthoflavone, and phenobarbital on the 3-methylcholanthrene-inducible isozyme of cytochrome P-450 within centrilobular, midzonal, and periportal hepatocytes. Baron J; Redick JA; Guengerich FP J Biol Chem; 1982 Jan; 257(2):953-7. PubMed ID: 7054190 [No Abstract] [Full Text] [Related]
6. Effects of phenobarbital, 3-methylcholanthrene and beta-naphthoflavone pretreatment on mouse liver microsomal enzymes and on metabolite patterns of benzo[a]pyrene. Wang IY Biochem Pharmacol; 1981 Jun; 30(11):1337-43. PubMed ID: 6268094 [No Abstract] [Full Text] [Related]
7. 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine photolabels a substrate-binding site of rat hepatic cytochrome P-450 form PB-4. Frey AB; Kreibich G; Wadhera AB; Clarke L; Waxman DJ Biochemistry; 1986 Aug; 25(17):4797-803. PubMed ID: 3768313 [TBL] [Abstract][Full Text] [Related]
8. Modifications of carcinogen metabolism in hepatic microsomes of suckling young by 3-methylcholanthrene or beta-naphthoflavone administered to lactating rats. Malejka-Giganti D; Decker RW; Ritter CL Biochem Pharmacol; 1983 Nov; 32(22):3335-44. PubMed ID: 6316979 [TBL] [Abstract][Full Text] [Related]
9. Altered induction response of hepatic cytochrome P-450 to phenobarbital, 3-methylcholanthrene, and beta-naphthoflavone in organotin-treated animals. Rosenberg DW; Sardana MK; Kappas A Biochem Pharmacol; 1985 Apr; 34(7):997-1005. PubMed ID: 3986002 [TBL] [Abstract][Full Text] [Related]
10. Induction of cytochrome P-450 mRNAs quantitated by in vitro translation and immunoprecipitation. Gozukara EM; Fagan J; Pastewka JV; Guengerich FP; Gelboin HV Arch Biochem Biophys; 1984 Aug; 232(2):660-9. PubMed ID: 6465891 [TBL] [Abstract][Full Text] [Related]
11. Comparison of trans-stilbene oxide, phenobarbital and 3-methylcholanthrene as inducers of steroid metabolism by the rat liver microsomal cytochrome P-450 system. Meijer J; DePierre JW J Steroid Biochem; 1983 Apr; 18(4):425-35. PubMed ID: 6834827 [TBL] [Abstract][Full Text] [Related]
12. Phenobarbital- and 3-methylcholanthrene-induced synthesis of two different molecular species of microsomal cytochrome P-450 in rat liver. Harada N; Omura T J Biochem; 1983 May; 93(5):1361-73. PubMed ID: 6885729 [TBL] [Abstract][Full Text] [Related]
13. Increased response of cytochrome P-450 dependent biotransformation reactions in rat liver to repeated administration of inducers. Kleeberg U; Sommer M; Klinger W Arch Toxicol Suppl; 1985; 8():361-5. PubMed ID: 3868365 [TBL] [Abstract][Full Text] [Related]
14. Different responsiveness of hepatic and pulmonary microsomal mixed function oxidases to phenobarbital-type and 3-methylcholanthrene-type polychlorinated biphenyls in rats. Yoshihara S; Nagata K; Yoshimura H J Pharmacobiodyn; 1983 Dec; 6(12):954-62. PubMed ID: 6425489 [TBL] [Abstract][Full Text] [Related]
15. Differential induction of fetal mouse liver and lung cytochromes P-450 by beta-naphthoflavone and 3-methylcholanthrene. Miller MS; Jones AB; Chauhan DP; Park SS; Anderson LM Carcinogenesis; 1989 May; 10(5):875-91. PubMed ID: 2468428 [TBL] [Abstract][Full Text] [Related]
16. Qualitative and quantitative differences in the induction and inhibition of hepatic benzo[a]pyrene metabolism in the rat and hamster. Wroblewski VJ; Gessner T; Olson JR Biochem Pharmacol; 1988 Apr; 37(8):1509-17. PubMed ID: 3358781 [TBL] [Abstract][Full Text] [Related]
17. Additional routes in the metabolism of phenacetin. Fischbach T; Lenk W Xenobiotica; 1985 Feb; 15(2):149-64. PubMed ID: 4002737 [TBL] [Abstract][Full Text] [Related]
18. Immunochemical identity of the 2,3,7,8-tetrachlorodibenzo-p-dioxin- and beta-naphthoflavone-induced cytochrome P-450 arachidonic acid epoxygenases in chick embryo liver: distinction from the omega-hydroxylase and the phenobarbital-induced epoxygenase. Kanetoshi A; Ward AM; May BK; Rifkind AB Mol Pharmacol; 1992 Dec; 42(6):1020-6. PubMed ID: 1480130 [TBL] [Abstract][Full Text] [Related]
19. Genetic differences in response to pulmonary cytochrome P-450 inducers and oxygen toxicity. Mansour H; Levacher M; Azoulay-Dupuis E; Moreau J; Marquetty C; Gougerot-Pocidalo MA J Appl Physiol (1985); 1988 Apr; 64(4):1376-81. PubMed ID: 3378972 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of four forms of cytochrome P-450 from liver microsomes of phenobarbital-treated and 3-methylcholanthrene-treated rats. Kuwahara S; Harada N; Yoshioka H; Miyata T; Omura T J Biochem; 1984 Mar; 95(3):703-14. PubMed ID: 6427199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]