BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6373375)

  • 1. Kringles: modules specialized for protein binding. Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases.
    Patthy L; Trexler M; Váli Z; Bányai L; Váradi A
    FEBS Lett; 1984 Jun; 171(1):131-6. PubMed ID: 6373375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genetic relationships between the kringle domains of human plasminogen, prothrombin, tissue plasminogen activator, urokinase, and coagulation factor XII.
    Castellino FJ; Beals JM
    J Mol Evol; 1987; 26(4):358-69. PubMed ID: 3131537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of fibronectin type II (FN2) modules: structural analyses of distantly-related members of the kringle family idey the kringle domain of neurotrypsin as a potential link between FN2 domains and kringles.
    Ozhogina OA; Trexler M; Bányai L; Llinás M; Patthy L
    Protein Sci; 2001 Oct; 10(10):2114-22. PubMed ID: 11567102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator.
    Bányai L; Váradi A; Patthy L
    FEBS Lett; 1983 Oct; 163(1):37-41. PubMed ID: 6685059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding kringle domains.
    Gehrmann M; Briknarová K; Bányai L; Patthy L; Llinás M
    Biol Chem; 2002 Jan; 383(1):137-48. PubMed ID: 11928808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin.
    Arni RK; Padmanabhan K; Padmanabhan KP; Wu TP; Tulinsky A
    Biochemistry; 1993 May; 32(18):4727-37. PubMed ID: 8387813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 1H-NMR study of isolated domains from human plasminogen. Structural homology between kringles 1 and 4.
    Llinas M; De Marco A; Hochschwender SM; Laursen RA
    Eur J Biochem; 1983 Oct; 135(3):379-91. PubMed ID: 6311534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modes of evolution in the protease and kringle domains of the plasminogen-prothrombin family.
    Hughes AL
    Mol Phylogenet Evol; 2000 Mar; 14(3):469-78. PubMed ID: 10712851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deriving the generic structure of the fibronectin type II domain from the prothrombin Kringle 1 crystal structure.
    Holland SK; Harlos K; Blake CC
    EMBO J; 1987 Jul; 6(7):1875-80. PubMed ID: 3653072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different evolutionary histories of kringle and protease domains in serine proteases: a typical example of domain evolution.
    Ikeo K; Takahashi K; Gojobori T
    J Mol Evol; 1995 Mar; 40(3):331-6. PubMed ID: 7723060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homology of kringle structures in urokinase and tissue-type plasminogen activator: the phylogeny with the related serine proteases.
    Takahashi K; Gojobori T; Naora H
    Cell Struct Funct; 1985 Sep; 10(3):209-18. PubMed ID: 3930078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP).
    Donate LE; Gherardi E; Srinivasan N; Sowdhamini R; Aparicio S; Blundell TL
    Protein Sci; 1994 Dec; 3(12):2378-94. PubMed ID: 7756992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kringle-specific monoclonal antibody.
    Church WR; Messier TL; Ouellette LA; Potts SE
    Hybridoma; 1994 Oct; 13(5):423-9. PubMed ID: 7860098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: critical contribution of kringle-4 revealed by the mutagenesis approaches.
    Joshi KK; Nanda JS; Kumar P; Sahni G
    Biochim Biophys Acta; 2012 Feb; 1824(2):326-33. PubMed ID: 22056293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding autonomy of the kringle 4 fragment of human plasminogen.
    Trexler M; Patthy L
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2457-61. PubMed ID: 6302685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA) and integrin alpha v beta 3 induces signal transduction and enhances plasminogen activation.
    Tarui T; Akakura N; Majumdar M; Andronicos N; Takagi J; Mazar AP; Bdeir K; Kuo A; Yarovoi SV; Cines DB; Takada Y
    Thromb Haemost; 2006 Mar; 95(3):524-34. PubMed ID: 16525582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The PDC-109 protein from bovine seminal plasma is similar to the gelatin-binding domain of bovine fibronectin and a kringle domain of human tissue-type plasminogen activator.
    Baker ME
    Biochem Biophys Res Commun; 1985 Aug; 130(3):1010-4. PubMed ID: 4040757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure and dynamics of the plasminogen kringle 2-AMCHA complex: 3(1)-helix in homologous domains.
    Marti DN; Schaller J; Llinás M
    Biochemistry; 1999 Nov; 38(48):15741-55. PubMed ID: 10625440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structural basis of the poor fibrin specificity of urokinase(I)--knowledge-based prediction of kringle structures of urokinase and its related proteins.
    Liu JN; Lu L; Gao X; Wang J; Zhu DX; Lai LH; Xu XJ; Tang YQ
    Sci China B; 1992 Feb; 35(2):176-82. PubMed ID: 1581002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure predictions of human plasminogen and the bovine prothrombin kringle loops.
    Powell JR; Beals JM; Castellino FJ
    Arch Biochem Biophys; 1986 Jul; 248(1):390-400. PubMed ID: 2942111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.