These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6373438)

  • 1. Molecular mechanisms of bacterial periplasmic transport systems.
    Higgins CF
    Biochem Soc Trans; 1984 Apr; 12(2):232-3. PubMed ID: 6373438
    [No Abstract]   [Full Text] [Related]  

  • 2. A new class of cobalamin transport mutants (btuF) provides genetic evidence for a periplasmic binding protein in Salmonella typhimurium.
    Van Bibber M; Bradbeer C; Clark N; Roth JR
    J Bacteriol; 1999 Sep; 181(17):5539-41. PubMed ID: 10464235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chimeric nucleotide-binding protein, encoded by a hisP-malK hybrid gene, is functional in maltose transport in Salmonella typhimurium.
    Schneider E; Walter C
    Mol Microbiol; 1991 Jun; 5(6):1375-83. PubMed ID: 1787792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins.
    Speiser DM; Ames GF
    J Bacteriol; 1991 Feb; 173(4):1444-51. PubMed ID: 1995591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proton nuclear magnetic resonance investigation of histidine-binding protein J of Salmonella typhimurium: a model for transport of L-histidine across cytoplasmic membrane.
    Ho C; Giza Y; Takahashi S; Ugen KE; Cottam PF; Dowd SR
    J Supramol Struct; 1980; 13(2):131-45. PubMed ID: 7017276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liganded and unliganded receptors interact with equal affinity with the membrane complex of periplasmic permeases, a subfamily of traffic ATPases.
    Ames GF; Liu CE; Joshi AK; Nikaido K
    J Biol Chem; 1996 Jun; 271(24):14264-70. PubMed ID: 8662800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amino acid sequence of D-ribose-binding protein from Salmonella typhimurium ST1.
    Buckenmeyer GK; Hermodson MA
    J Biol Chem; 1983 Nov; 258(21):12957. PubMed ID: 6415058
    [No Abstract]   [Full Text] [Related]  

  • 8. Completion of the nucleotide sequence of the 'maltose B' region in Salmonella typhimurium: the high conservation of the malM gene suggests a selected physiological role for its product.
    Schneider E; Francoz E; Dassa E
    Biochim Biophys Acta; 1992 Jan; 1129(2):223-7. PubMed ID: 1730061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of two histidine-binding proteins of Salmonella typhimurium.
    Zukin RS; Klos MF; Hirsch RE
    Biophys J; 1986 Jun; 49(6):1229-35. PubMed ID: 3521754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SphX protein of Synechococcus species PCC 7942 belongs to a family of phosphate-binding proteins.
    Mann NH; Scanlan DJ
    Mol Microbiol; 1994 Nov; 14(3):595-6. PubMed ID: 7885237
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure/function analysis of the periplasmic histidine-binding protein. Mutations decreasing ligand binding alter the properties of the conformational change and of the closed form.
    Wolf A; Shaw EW; Oh BH; De Bondt H; Joshi AK; Ames GF
    J Biol Chem; 1995 Jul; 270(27):16097-106. PubMed ID: 7608172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of binding protein dependent ribose transport in spheroplasts derived from a binding protein negative Escherichia coli K12 mutant and from Salmonella typhimurium.
    Robb FT; Furlong CE
    J Supramol Struct; 1980; 13(2):183-90. PubMed ID: 6787346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding protein-dependent active transport in Escherichia coli and Salmonella typhimurium.
    Furlong CE
    Methods Enzymol; 1986; 125():279-89. PubMed ID: 3520223
    [No Abstract]   [Full Text] [Related]  

  • 14. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium.
    Higgins CF; Haag PD; Nikaido K; Ardeshir F; Garcia G; Ames GF
    Nature; 1982 Aug; 298(5876):723-7. PubMed ID: 7050725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of the binding protein-dependent galactose transport of Salmonella typhimurium in proteoliposomes.
    Richarme G; el Yaagoubi A; Kohiyama M
    Biochim Biophys Acta; 1992 Feb; 1104(1):201-6. PubMed ID: 1550848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mutational hot-spot in the hisM gene of the histidine transport operon in Salmonella typhimurium is due to deletion of repeated sequences and results in an altered specificity of transport.
    Payne GM; Spudich EN; Ames GF
    Mol Gen Genet; 1985; 200(3):493-6. PubMed ID: 3900641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds.
    Pflugrath JW; Quiocho FA
    Nature; 1985 Mar 21-27; 314(6008):257-60. PubMed ID: 3885043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure mapping and complementation studies of the metD methionine transport system in Salmonella typhimurium.
    Grundy CE; Ayling PD
    Genet Res; 1992 Aug; 60(1):1-6. PubMed ID: 1452012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: complete nucleotide sequences.
    Higgins CF; Ames GF
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6038-42. PubMed ID: 6273842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide sequence of the btuCED genes involved in vitamin B12 transport in Escherichia coli and homology with components of periplasmic-binding-protein-dependent transport systems.
    Friedrich MJ; de Veaux LC; Kadner RJ
    J Bacteriol; 1986 Sep; 167(3):928-34. PubMed ID: 3528129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.