These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 6373762)

  • 1. Cruciform transitions in DNA.
    Sinden RR; Pettijohn DE
    J Biol Chem; 1984 May; 259(10):6593-600. PubMed ID: 6373762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfect palindromic lac operator DNA sequence exists as a stable cruciform structure in supercoiled DNA in vitro but not in vivo.
    Sinden RR; Broyles SS; Pettijohn DE
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1797-801. PubMed ID: 6340109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions.
    Courey AJ; Wang JC
    Cell; 1983 Jul; 33(3):817-29. PubMed ID: 6871994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic, sequence-dependent DNA structure as exemplified by cruciform extrusion from inverted repeats in negatively supercoiled DNA.
    Lilley DM
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():101-12. PubMed ID: 6305553
    [No Abstract]   [Full Text] [Related]  

  • 5. Relationship between superhelical density and cruciform formation in plasmid pVH51.
    Singleton CK; Wells RD
    J Biol Chem; 1982 Jun; 257(11):6292-5. PubMed ID: 6281266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
    Zheng GX; Sinden RR
    J Biol Chem; 1988 Apr; 263(11):5356-61. PubMed ID: 3356690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow cruciform transitions in palindromic DNA.
    Gellert M; O'Dea MH; Mizuuchi K
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5545-9. PubMed ID: 6577442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale stable opening of supercoiled DNA in response to temperature and supercoiling in (A + T)-rich regions that promote low-salt cruciform extrusion.
    Bowater R; Aboul-ela F; Lilley DM
    Biochemistry; 1991 Dec; 30(49):11495-506. PubMed ID: 1747368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of the ColE1 cruciform. Comparisons between probing and topological experiments using single topoisomers.
    Lilley DM; Hallam LR
    J Mol Biol; 1984 Nov; 180(1):179-200. PubMed ID: 6096558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms.
    Singleton CK
    J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere.
    Dickie P; Morgan AR; McFadden G
    J Mol Biol; 1987 Aug; 196(3):541-58. PubMed ID: 2824785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced 4,5',8-trimethylpsoralen cross-linking of left-handed Z-DNA stabilized by DNA supercoiling.
    Sinden RR; Kochel TJ
    Biochemistry; 1987 Mar; 26(5):1343-50. PubMed ID: 3567173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage of cruciform DNA structures by an activity from Saccharomyces cerevisiae.
    West SC; Körner A
    Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6445-9. PubMed ID: 3901001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of cruciform extrusion in supercoiled DNA: use of a synthetic inverted repeat to study conformational populations.
    Lilley DM; Markham AF
    EMBO J; 1983; 2(4):527-33. PubMed ID: 6628359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo.
    Sinden RR; Zheng GX; Brankamp RG; Allen KN
    Genetics; 1991 Dec; 129(4):991-1005. PubMed ID: 1783300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells.
    Zheng GX; Kochel T; Hoepfner RW; Timmons SE; Sinden RR
    J Mol Biol; 1991 Sep; 221(1):107-22. PubMed ID: 1920399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA.
    Panyutin I; Klishko V; Lyamichev V
    J Biomol Struct Dyn; 1984 Jun; 1(6):1311-24. PubMed ID: 6400822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The absence of cruciform structures from pAO3 plasmid DNA in vivo.
    Lyamichev V; Panyutin I; Mirkin S
    J Biomol Struct Dyn; 1984 Oct; 2(2):291-301. PubMed ID: 6401131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flanking AT-rich sequences may lower the activation energy of cruciform extrusion in supercoiled DNA.
    Wang Y; Sauerbier W
    Biochem Biophys Res Commun; 1989 Jan; 158(2):423-31. PubMed ID: 2537072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.