These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 637544)

  • 1. Adaptational change in proline and water content of Staphylococcus aureus after alteration of environmental salt concentration.
    Koujima I; Hayashi H; Tomochika K; Okabe A; Kanemasa Y
    Appl Environ Microbiol; 1978 Mar; 35(3):467-70. PubMed ID: 637544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamine and proline accumulation by Staphylococcus aureus with reduction in water activity.
    Anderson CB; Witter LD
    Appl Environ Microbiol; 1982 Jun; 43(6):1501-3. PubMed ID: 7103493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptational changes in Staphylococcus aureus MF31 grown above its maximum temperature when protected by NaCl: physiological studies.
    Hurst A; Ofori E; El-Banna AA; Harwig J
    Can J Microbiol; 1984 Sep; 30(9):1105-11. PubMed ID: 6150754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive changes in cardiolipin content of Staphylococcus aureus grown in different salt concentrations.
    Takatsu T
    Acta Med Okayama; 1975 Dec; 29(6):413-20. PubMed ID: 132841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus.
    Amin US; Lash TD; Wilkinson BJ
    Arch Microbiol; 1995 Feb; 163(2):138-42. PubMed ID: 7710327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K(+)/Na(+) selectivity and proline accumulation.
    Ghars MA; Parre E; Debez A; Bordenave M; Richard L; Leport L; Bouchereau A; Savouré A; Abdelly C
    J Plant Physiol; 2008 Apr; 165(6):588-99. PubMed ID: 17723252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of two proline transport systems in Staphylococcus aureus and their possible roles in osmoregulation.
    Bae JH; Miller KJ
    Appl Environ Microbiol; 1992 Feb; 58(2):471-5. PubMed ID: 1610171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humectant permeability influences growth and compatible solute uptake by Staphylococcus aureus subjected to osmotic stress.
    Vilhelmsson O; Miller KJ
    J Food Prot; 2002 Jun; 65(6):1008-15. PubMed ID: 12092714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acids and proteomic acclimation of Staphylococcus aureus when incubated in a defined minimal medium supplemented with 5% sodium chloride.
    Alreshidi MM; Dunstan RH; Macdonald MM; Smith ND; Gottfries J; Roberts TK
    Microbiologyopen; 2019 Jun; 8(6):e00772. PubMed ID: 30739392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy dependency on the salt-resistance of Staphylococcus aureus: Effects of various inhibitors on the growth in high salinity condition.
    Tomochika K
    Acta Med Okayama; 1975 Jun; 29(3):171-82. PubMed ID: 127511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential tolerance of 3 self-rooted Citrus limon cultivars to NaCl stress.
    Tsabarducas V; Chatzistathis T; Therios I; Koukourikou-Petridou M; Tananaki C
    Plant Physiol Biochem; 2015 Dec; 97():196-206. PubMed ID: 26476793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptational changes in Staphylococcus aureus MF 31 grown above its maximum growth temperature when protected by sodium chloride: lipid studies.
    Hurst A; Ofori E; Vishnubhatla I; Kates M
    Can J Microbiol; 1984 Nov; 30(11):1424-7. PubMed ID: 6518423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair and enterotoxin synthesis by Staphylococcus aureus after thermal shock.
    Hernández FJ; Goyache J; Orden JA; Blanco JL; Doménech A; Suárez G; Gómez-Lucía E
    Appl Environ Microbiol; 1993 May; 59(5):1515-9. PubMed ID: 8517746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-Sensitive growth of Staphylococcus aureus: stimulation of salt-induced autolysis by multiple environmental factors.
    Ochiai T
    Microbiol Immunol; 1999; 43(7):705-9. PubMed ID: 10529112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the response of in vitro cultured Myrtus communis L. plants to high concentrations of NaCl.
    Di Cori P; Lucioli S; Frattarelli A; Nota P; Tel-Or E; Benyamini E; Gottlieb H; Caboni E; Forni C
    Plant Physiol Biochem; 2013 Dec; 73():420-6. PubMed ID: 24239614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Lactic Acid and Salt on Enterotoxin A Production and Growth of Staphylococcus aureus.
    Elahi S; Fujikawa H
    J Food Sci; 2019 Nov; 84(11):3233-3240. PubMed ID: 31618461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability.
    Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C
    J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staphylococcus aureus requires increased level of Ca(2+) or Mn(2+) to grow normally in a high-NaCl/low-Mg(2+) medium.
    Ochiai T
    Microbiol Immunol; 2001; 45(11):769-76. PubMed ID: 11791670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline transport in Staphylococcus aureus: a high-affinity system and a low-affinity system involved in osmoregulation.
    Townsend DE; Wilkinson BJ
    J Bacteriol; 1992 Apr; 174(8):2702-10. PubMed ID: 1556088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis.
    Wali M; Gunsè B; Llugany M; Corrales I; Abdelly C; Poschenrieder C; Ghnaya T
    Planta; 2016 Aug; 244(2):333-46. PubMed ID: 27061088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.