These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 637549)

  • 1. Microbial transformations of natural antitumor agents: oxidation of lapachol by Penicillium notatum.
    Otten S; Rosazza JP
    Appl Environ Microbiol; 1978 Mar; 35(3):554-7. PubMed ID: 637549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative ring fission of the naphthoquinones lapachol and dichloroallyl lawsone by Penicillium notatum.
    Otten SL; Rosazza JP
    J Biol Chem; 1983 Feb; 258(3):1610-3. PubMed ID: 6822525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial transformations of natural antitumor agents: conversion of lapachol to dehydro-alpha-lapachone by Curvularia lunata.
    Otten S; Rosazza JP
    Appl Environ Microbiol; 1979 Aug; 38(2):311-3. PubMed ID: 574750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lapachol biotransformation by filamentous fungi yields bioactive quinone derivatives and lapachol-stimulated secondary metabolites.
    Barbosa Coitinho L; Fumagalli F; da Rosa-Garzon NG; da Silva Emery F; Cabral H
    Prep Biochem Biotechnol; 2019; 49(5):459-463. PubMed ID: 30896339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanistic study on the Hooker oxidation: synthesis of novel indane carboxylic acid derivatives from lapachol.
    Eyong KO; Puppala M; Kumar PS; Lamshöft M; Folefoc GN; Spiteller M; Baskaran S
    Org Biomol Chem; 2013 Jan; 11(3):459-68. PubMed ID: 23196897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of luteoskyrin and isolation of a new metabolite, pibasterol, from Penicillium islandicum Sopp.
    Ghosh AC; Manmade A; Kobbe B; Townsend JM; Demain AL
    Appl Environ Microbiol; 1978 Mar; 35(3):563-6. PubMed ID: 565188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two new inhibitors of phospholipase A2 produced by Penicillium chermesinum. Taxonomy, fermentation, isolation, structure determination and biological properties.
    Singh PD; Johnson JH; Aklonis CA; Bush K; Fisher SM; O'Sullivan J
    J Antibiot (Tokyo); 1985 Jun; 38(6):706-12. PubMed ID: 3839502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of naphthalene by Cunninghamella elegans.
    Cerniglia CE; Gibson DT
    Appl Environ Microbiol; 1977 Oct; 34(4):363-70. PubMed ID: 921262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mycotoxins. II. Mycotoxins of Penicillium spp., Fusarium spp., Stachybotrys atra, Pithomyces chartarum and other fungi].
    Reiss J
    Z Allg Mikrobiol; 1968; 8(5):450-74. PubMed ID: 4916833
    [No Abstract]   [Full Text] [Related]  

  • 10. Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation.
    Silva EO; Ruano-González A; dos Santos RA; Sánchez-Maestre R; Furtado NA; Collado IG; Aleu J
    Nat Prod Commun; 2016 Jan; 11(1):95-8. PubMed ID: 26996030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of lapachol metabolites produced by probiotics.
    Oliveira Silva E; Cruz de Carvalho T; Parshikov IA; Alves dos Santos R; Silva Emery F; Jacometti Cardoso Furtado NA
    Lett Appl Microbiol; 2014 Jul; 59(1):108-14. PubMed ID: 24635204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial transformations of natural antitumor agents XXII: Conversion of bouvardin to O-desmethylbouvardin and bouvardin catechol.
    Petroski RJ; Bates RB; Linz GS; Rosazza JP
    J Pharm Sci; 1983 Nov; 72(11):1291-4. PubMed ID: 6644590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2,2'-dimethoxy-4a,4a'-dehydrorugulosin (rugulin), a minor metabolite from Penicillium rugulosum.
    Sedmera P; Podojil M; Vokoun J; Betina V; Nemec P
    Folia Microbiol (Praha); 1978; 23(1):64-7. PubMed ID: 564320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial oxidation of methyl branched alkanes.
    Pirnik MP
    CRC Crit Rev Microbiol; 1977 Sep; 5(4):413-22. PubMed ID: 410588
    [No Abstract]   [Full Text] [Related]  

  • 15. Two-step hydrolysis of amygdalin in molds.
    Brimer L; Cicalini AR; Federici F; Nout RM; Petruccioli M; Pulci V
    Riv Biol; 1996; 89(3):493-6. PubMed ID: 9122587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformations of natural antitumor agents. IV. Formation of N-(2)-nor-d-tetrandrine by Cunninghamella blakesleeana (ATCC 8688a).
    Davis PJ; Wiese DR; Rosazza JP
    Lloydia; 1977; 40(3):239-46. PubMed ID: 895382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial reduction of ketopantoyl lactone to pantoyl lactone.
    Lanzilotta RP; Bradley DG; McDonald KM
    Appl Microbiol; 1974 Jan; 27(1):130-4. PubMed ID: 4589122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial transformations of natural antitumor agents. 9. O-Demethylation of 9-methoxyellipticine.
    Chien MM; Rosazza JP
    J Nat Prod; 1979; 42(6):643-7. PubMed ID: 575547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current trends in the microbiological transformation of steroids.
    Marsheck WJ
    Prog Ind Microbiol; 1971; 10():49-103. PubMed ID: 4945411
    [No Abstract]   [Full Text] [Related]  

  • 20. Fungal transformation of naphthalene.
    Cerniglia CE; Hebert RL; Szaniszlo PJ; Gibson DT
    Arch Microbiol; 1978 May; 117(2):135-43. PubMed ID: 678019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.