These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6375671)

  • 1. Reduction of lactoperoxidase-H2O2 compounds by ferrocyanide: indirect evidence of an apoprotein site for one of the two oxidizing equivalents.
    Courtin F; Michot JL; Virion A; Pommier J; Deme D
    Biochem Biophys Res Commun; 1984 Jun; 121(2):463-70. PubMed ID: 6375671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the oxidation of ferrocyanide by lactoperoxidase compound II.
    Kardel DM; Dunford HB; Alexandre S
    Eur J Biochem; 1990 Nov; 194(1):259-62. PubMed ID: 2253620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the molecular mechanism of lactoperoxidase-catalyzed H2O2 metabolism and irreversible enzyme inactivation.
    Jenzer H; Jones W; Kohler H
    J Biol Chem; 1986 Nov; 261(33):15550-6. PubMed ID: 3023322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman spectroscopy reveals pH-dependent active site structural changes of lactoperoxidase compound 0 and its ferryl heme O-O bond cleavage products.
    Mak PJ; Thammawichai W; Wiedenhoeft D; Kincaid JR
    J Am Chem Soc; 2015 Jan; 137(1):349-61. PubMed ID: 25506715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of horseradish peroxidase compound II to compound I.
    Hewson WD; Hager LP
    J Biol Chem; 1979 May; 254(9):3182-6. PubMed ID: 34616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of phenolic compounds by lactoperoxidase. Evidence for the presence of a low-potential compound II during catalytic turnover.
    Monzani E; Gatti AL; Profumo A; Casella L; Gullotti M
    Biochemistry; 1997 Feb; 36(7):1918-26. PubMed ID: 9048579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the oxidation of ferrocyanide by horseradish peroxidase compounds I and II.
    Hasinoff BB; Dunford HB
    Biochemistry; 1970 Dec; 9(25):4930-9. PubMed ID: 5480158
    [No Abstract]   [Full Text] [Related]  

  • 8. The role of compound III in reversible and irreversible inactivation of lactoperoxidase.
    Huwiler M; Jenzer H; Kohler H
    Eur J Biochem; 1986 Aug; 158(3):609-14. PubMed ID: 3015617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An extended X-ray absorption fine structure investigation of the structure of the active site of lactoperoxidase.
    Chang CS; Sinclair R; Khalid S; Yamazaki I; Nakamura S; Powers L
    Biochemistry; 1993 Mar; 32(11):2780-6. PubMed ID: 8457545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scavenging of oxygen radicals by heme peroxidases.
    Gebicka L; Gebicki JL
    Acta Biochim Pol; 1996; 43(4):673-8. PubMed ID: 9104503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of ferrous lactoperoxidase with hydrogen peroxide and dioxygen: an anaerobic stopped-flow study.
    Jantschko W; Furtmüller PG; Zederbauer M; Neugschwandtner K; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2005 Feb; 434(1):51-9. PubMed ID: 15629108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton stoichiometry of the cytochrome c peroxidase mechanism as a function of pH.
    Conroy CW; Erman JE
    Biochim Biophys Acta; 1978 Dec; 527(2):370-8. PubMed ID: 31913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinetic study of the endogenous reduction of the oxidized sites in the primary cytochrome c peroxidase-hydrogen peroxide compound.
    Erman JE; Yonetani T
    Biochim Biophys Acta; 1975 Jun; 393(2):350-7. PubMed ID: 238609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of mitoxantrone by lactoperoxidase.
    Brück TB; Harvey PJ
    Biochim Biophys Acta; 2003 Jul; 1649(2):154-63. PubMed ID: 12878034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome c peroxidase catalyzed oxidation of ferrocyanide by hydrogen peroxide. Steady-state kinetics.
    Jordi HC; Erman JE
    Biochemistry; 1974 Aug; 13(18):3741-5. PubMed ID: 4368557
    [No Abstract]   [Full Text] [Related]  

  • 16. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/H2O2/iodide system.
    Huwiler M; Kohler H
    Eur J Biochem; 1984 May; 141(1):69-74. PubMed ID: 6723665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on horseradish peroxidase. X. The mechanism of the oxidation of p-cresol, ferrocyanide, and iodide by compound II.
    Critchlow JE; Dunford HB
    J Biol Chem; 1972 Jun; 247(12):3714-25. PubMed ID: 5033386
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanistic insight into peroxo-shunt formation of biomimetic models for compound II, their reactivity toward organic substrates, and the influence of N-methylimidazole axial ligation.
    Oszajca M; Drzewiecka-Matuszek A; Franke A; Rutkowska-Zbik D; Brindell M; Witko M; Stochel G; van Eldik R
    Chemistry; 2014 Feb; 20(8):2328-43. PubMed ID: 24443188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on kinetic behavior of horseradish peroxidase isoenzymes.
    Kato M; Aibara S; Morita Y; Nakatani H; Hiromi K
    J Biochem; 1984 Mar; 95(3):861-70. PubMed ID: 6725238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.