These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6376104)

  • 21. Cytotoxic effects of quartz and chrysotile asbestos: in vitro interspecies comparison with alveolar macrophages.
    Schimmelpfeng J; Seidel A
    J Toxicol Environ Health; 1991 Jun; 33(2):131-40. PubMed ID: 2051490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of mineral dust on generation of superoxide radicals and hydrogen peroxide by alveolar macrophages, granulocytes and monocytes].
    Gusev VA; Danilovskaia EV; Vatolkina OE
    Biull Eksp Biol Med; 1990 Oct; 110(10):372-5. PubMed ID: 2177667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation.
    Warheit DB; Hansen JF; Yuen IS; Kelly DP; Snajdr SI; Hartsky MA
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):10-22. PubMed ID: 9221819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Airway intra-luminal macrophages: evidence of origin and comparisons to alveolar macrophages.
    Lehnert BE; Valdez YE; Sebring RJ; Lehnert NM; Saunders GC; Steinkamp JA
    Am J Respir Cell Mol Biol; 1990 Oct; 3(4):377-91. PubMed ID: 2206541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo and in vitro NO2 exposures enhance phagocytic and tumoricidal activities of rat alveolar macrophages.
    Sone S; Brennan LM; Creasia DA
    J Toxicol Environ Health; 1983 Jan; 11(1):151-63. PubMed ID: 6827622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Functional changes in the alveolar and peritoneal macrophages of rats exposed to quartz dust].
    Merkur'eva RV; Aulika BV; Bazeliuk LT; Iakimova ER; Dolinskaia SI
    Gig Sanit; 1984 Jun; (6):16-8. PubMed ID: 6088365
    [No Abstract]   [Full Text] [Related]  

  • 27. Comparative damage to alveolar macrophages after phagocytosis of respirable particles.
    Hill JO; Gray RH; DeNee PB; Newton GJ
    Environ Res; 1982 Feb; 27(1):95-109. PubMed ID: 7067684
    [No Abstract]   [Full Text] [Related]  

  • 28. Tantalum oxide and alveolar macrophage function.
    Matthay RA; Putman CE; Gee JB; Smith GJ; McCloud T; Greenspan RH
    Invest Radiol; 1977; 12(3):292-4. PubMed ID: 863635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Particle binding, phagocytosis, and plastic substrate adherence characteristics of alveolar macrophages from rats acutely treated with chlorphentermine.
    Lehnert BE; Ferin J
    J Reticuloendothel Soc; 1983 Apr; 33(4):293-303. PubMed ID: 6834364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological responses of workplace particles and their association with adverse health effects on miners.
    Chen W; Stempelmann K; Rehn S; Diederichs H; Rehn B; Bruch J
    J Environ Monit; 2004 Dec; 6(12):967-72. PubMed ID: 15568045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A cell kinetic study of the alveolar wall following dust deposition.
    Brightwell J; Heppleston AG
    Inhaled Part; 1975 Sep; 4 Pt 2():509-18. PubMed ID: 198364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of alveolar lining material-coated silica on rat alveolar macrophages.
    Emerson RJ; Davis GS
    Environ Health Perspect; 1983 Sep; 51():81-4. PubMed ID: 6315386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron microscopic investigations on dust penetration into the pulmonary interstitium in experimental pneumoconioses.
    Kissler W; Morgenroth K; Scherbeck W
    Respiration; 1982; 43(2):114-26. PubMed ID: 7100660
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macrophage damage in relation to the pathogenesis of lung diseases.
    Brain JD
    Environ Health Perspect; 1980 Apr; 35():21-8. PubMed ID: 6997029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of alveolar macrophages following the deposition of a low burden or iron oxide in the lung.
    Lehnert BE; Morrow PE
    J Toxicol Environ Health; 1985; 16(6):855-68. PubMed ID: 4093998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alveolar macrophage-epithelial cell interaction following exposure to atmospheric particles induces the release of mediators involved in monocyte mobilization and recruitment.
    Ishii H; Hayashi S; Hogg JC; Fujii T; Goto Y; Sakamoto N; Mukae H; Vincent R; van Eeden SF
    Respir Res; 2005 Aug; 6(1):87. PubMed ID: 16053532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A multi-chamber model of quartz dust kinetics in the pulmonary region during chronic inhalation exposure in rats].
    Katsnel'son BA; Konysheva LK; Privalova LI; Morozova KI
    Gig Tr Prof Zabol; 1991; (7):5-9. PubMed ID: 1916417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of the alveolar macrophage in pulmonary bacterial defense.
    Goldstein E; Bartlema HC
    Bull Eur Physiopathol Respir; 1977; 13(1):57-67. PubMed ID: 321054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.