These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6376505)

  • 21. Roles of vitamin B 12 and folic acid in methionine synthesis.
    Weissbach H; Taylor RT
    Vitam Horm; 1970; 28():415-40. PubMed ID: 4947477
    [No Abstract]   [Full Text] [Related]  

  • 22. Regulation of one-carbon biosynthesis and utilization in Escherichia coli.
    Meedel TH; Pizer LI
    J Bacteriol; 1974 Jun; 118(3):905-10. PubMed ID: 4598009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of methionine-loading on methyl group synthesis and activation in rat brain and liver.
    Carl GF; Benesh FC; Hudson JL
    Biol Psychiatry; 1978 Dec; 13(6):661-9. PubMed ID: 737254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):728-44. PubMed ID: 4886251
    [No Abstract]   [Full Text] [Related]  

  • 25. Serine hydroxymethyltransferase: a key player connecting purine, folate and methionine metabolism in Saccharomyces cerevisiae.
    Saint-Marc C; Hürlimann HC; Daignan-Fornier B; Pinson B
    Curr Genet; 2015 Nov; 61(4):633-40. PubMed ID: 25893566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defective transport in S-adenosylmethionine synthetase mutants of Escherichia coli.
    Cox GS; Kaback HR; Weissbach H
    Arch Biochem Biophys; 1974 Apr; 161(2):610-20. PubMed ID: 4599317
    [No Abstract]   [Full Text] [Related]  

  • 27. Escherichia coli B N5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: activation with S-adenosyl-L-methionine and the mechanism for methyl group transfer.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1969 Feb; 129(2):745-66. PubMed ID: 4886252
    [No Abstract]   [Full Text] [Related]  

  • 28. Control of serine transhydroxymethylase synthesis in Escherichia coli K12.
    Miller BA; Newman EB
    Can J Microbiol; 1974 Jan; 20(1):41-7. PubMed ID: 4595735
    [No Abstract]   [Full Text] [Related]  

  • 29. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate.
    Stover P; Schirch V
    J Biol Chem; 1990 Aug; 265(24):14227-33. PubMed ID: 2201683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate.
    Scarsdale JN; Radaev S; Kazanina G; Schirch V; Wright HT
    J Mol Biol; 2000 Feb; 296(1):155-68. PubMed ID: 10656824
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folic acid and the methylation of homocysteine by Bacillus subtilis.
    Salem AR; Pattison JR; Foster MA
    Biochem J; 1972 Feb; 126(4):993-1004. PubMed ID: 4627401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequence homology between prokaryotic and eukaryotic forms of serine hydroxymethyltransferase.
    Barra D; Martini F; Angelaccio S; Bossa F; Gavilanes F; Peterson D; Bullis B; Schirch L
    Biochem Biophys Res Commun; 1983 Nov; 116(3):1007-12. PubMed ID: 6360170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methionine limitation in Escherichia coli K-12 by growth on the sulfoxides of D-methionine.
    Greene RC
    J Bacteriol; 1973 Oct; 116(1):230-4. PubMed ID: 4583212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro conversion of formate to serine: effect of tetrahydropteroylpolyglutamates and serine hydroxymethyltransferase on the rate of 10-formyltetrahydrofolate synthetase.
    Strong WB; Schirch V
    Biochemistry; 1989 Nov; 28(24):9430-9. PubMed ID: 2514800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymic synthesis of methionine: formation of a radioactive cobamide enzyme with N5-methyl-14C-tetrahydrofolate.
    Taylor RT; Weissbach H
    Arch Biochem Biophys; 1967 Mar; 119(1):572-9. PubMed ID: 4861150
    [No Abstract]   [Full Text] [Related]  

  • 36. Proofreading and the evolution of a methyl donor function. Cyclization of methionine to S-methyl homocysteine thiolactone by Escherichia coli methionyl-tRNA synthetase.
    Jakubowski H
    J Biol Chem; 1993 Mar; 268(9):6549-53. PubMed ID: 8454625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: catalysis by a reconstituted methyl-14C-cobalamin holoenzyme and the function of S-adenosyl-l-methionine.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1970 Apr; 137(2):453-9. PubMed ID: 4909167
    [No Abstract]   [Full Text] [Related]  

  • 38. Regulation of serine transhydroxymethylase activity in Salmonella typhimurium.
    Stauffer GV; Baker CA; Brenchley JE
    J Bacteriol; 1974 Dec; 120(3):1017-25. PubMed ID: 4373434
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Escherichia coli B 5-methyltetrahydrofolate-homocysteine cobalamin methyltransferase: resolution and reconstitution of holoenzyme.
    Taylor RT
    Arch Biochem Biophys; 1970 Apr; 137(2):529-46. PubMed ID: 4909170
    [No Abstract]   [Full Text] [Related]  

  • 40. Relationship between the cobalamin-dependent methyltransferase activities in Escherichia coli B and an E. coli B (Met H - ) mutant.
    Taylor RT; Hanna ML
    Arch Biochem Biophys; 1973 Jun; 156(2):480-92. PubMed ID: 4578118
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.