These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 6377034)
1. Mechanisms of microbial resistance and detoxification of mercury and organomercury compounds: physiological, biochemical, and genetic analyses. Robinson JB; Tuovinen OH Microbiol Rev; 1984 Jun; 48(2):95-124. PubMed ID: 6377034 [No Abstract] [Full Text] [Related]
2. Biotransformations of mercury compounds. Summers AO Basic Life Sci; 1988; 45():105-9. PubMed ID: 3052407 [No Abstract] [Full Text] [Related]
3. Effect of thiol compounds and flavins on mercury and organomercurial degrading enzymes in mercury resistant aquatic bacteria. Pahan K; Ray S; Gachhui R; Chaudhuri J; Mandal A Bull Environ Contam Toxicol; 1990 Feb; 44(2):216-23. PubMed ID: 2322662 [No Abstract] [Full Text] [Related]
4. Volatilization of mercury compounds and utilization of various aromatic compounds by a broad-spectrum mercury resistant Bacillus pasteurii strain. Pahan K; Ray S; Gachhui R; Chaudhuri J; Mandal A Bull Environ Contam Toxicol; 1991 Apr; 46(4):591-8. PubMed ID: 1855005 [No Abstract] [Full Text] [Related]
5. Microbial transformations of metals. Summers AO; Silver S Annu Rev Microbiol; 1978; 32():637-72. PubMed ID: 360977 [No Abstract] [Full Text] [Related]
6. Physical and genetic map of the organomercury resistance (Omr) and inorganic mercury resistance (Hgr) loci of the IncM plasmid R831b. Ogawa HI; Tolle CL; Summers AO Gene; 1984 Dec; 32(3):311-20. PubMed ID: 6099319 [TBL] [Abstract][Full Text] [Related]
7. Bacterial detoxification of Hg(II) and organomercurials. Miller SM Essays Biochem; 1999; 34():17-30. PubMed ID: 10730186 [TBL] [Abstract][Full Text] [Related]
11. [A contribution to the pathogenesis of sublimate nephrosis]. GAYER J; PARTOWI R Z Gesamte Exp Med; 1962; 135():419-30. PubMed ID: 13897372 [No Abstract] [Full Text] [Related]
12. Detoxification of mercury in the environment. Cathum S; Velicogna D; Obenauf A; Dumouchel A; Punt M; Brown CE; Ridal J Anal Bioanal Chem; 2005 Apr; 381(8):1491-8. PubMed ID: 15821905 [TBL] [Abstract][Full Text] [Related]
13. [The effect of 3 mercury derivatives on the growth of Euglena gracilis Z]. Simeray J; Delcourt A; Mestre JC C R Seances Soc Biol Fil; 1977; 171(4):901-6. PubMed ID: 145300 [TBL] [Abstract][Full Text] [Related]
14. A review of metal accumulation and toxicity in wild mammals. I. Mercury. Wren CD Environ Res; 1986 Jun; 40(1):210-44. PubMed ID: 3519207 [TBL] [Abstract][Full Text] [Related]
15. [Aminoaciduria produced by maleic acid. V. Comparison of maleic acid poisoning with intoxications produced by salyrgan, mercury chloride, iodoacetate, malonic acid and phlorhizin]. ANGIELSKI S; ROGULSKI J; MADONSKA L Acta Biochim Pol; 1960; 7():269-84. PubMed ID: 13683587 [No Abstract] [Full Text] [Related]
16. Elimination of mercury and organomercurials by nitrogen-fixing bacteria. Ghosh S; Sadhukhan PC; Ghosh DK; Chaudhuri J; Mandal A Bull Environ Contam Toxicol; 1997 Jun; 58(6):993-8. PubMed ID: 9136665 [No Abstract] [Full Text] [Related]
17. Interaction of inorganic to organic mercury in their metabolism in human body. Suzuki T; Shishido S; Ishihara N Int Arch Occup Environ Health; 1976 Dec; 38(2):103-13. PubMed ID: 1002302 [No Abstract] [Full Text] [Related]
18. Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Yannai S; Berdicevsky I; Duek L Appl Environ Microbiol; 1991 Jan; 57(1):245-7. PubMed ID: 2036011 [TBL] [Abstract][Full Text] [Related]
19. Microbial transformation of mercury species and their importance in the biogeochemical cycle of mercury. Baldi F Met Ions Biol Syst; 1997; 34():213-57. PubMed ID: 9046572 [No Abstract] [Full Text] [Related]