These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 6377340)

  • 1. Effects of unstirred layers on membrane phenomena.
    Barry PH; Diamond JM
    Physiol Rev; 1984 Jul; 64(3):763-872. PubMed ID: 6377340
    [No Abstract]   [Full Text] [Related]  

  • 2. Calculation of unstirred layer thickness in membrane transport experiments: a survey.
    Pedley TJ
    Q Rev Biophys; 1983 May; 16(2):115-50. PubMed ID: 6359229
    [No Abstract]   [Full Text] [Related]  

  • 3. An analysis of unstirred layers in series with "tight" and "porous" lipid bilayer membranes.
    Andreoli TE; Troutman SL
    J Gen Physiol; 1971 Apr; 57(4):464-78. PubMed ID: 5549099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical reactions and membranes: a macroscopic basis for facilitated transport, chemiosmosis and active transport. Part I: Linear analysis.
    Bunow B
    J Theor Biol; 1978 Nov; 75(1):51-78. PubMed ID: 745431
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of unstirred layers on binding and reaction kinetics at a membrane surface.
    Verkman AS; Dix JA
    Anal Biochem; 1984 Oct; 142(1):109-16. PubMed ID: 6517306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroosmosis in membranes: effects of unstirred layers and transport numbers. I. Theory.
    Barry PH; Hope AB
    Biophys J; 1969 May; 9(5):700-28. PubMed ID: 5786317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A central role for cell osmolarity in isotonic fluid transport across epithelia.
    Fischbarg J; Liebovitch LS; Koniarek JP
    Biol Cell; 1985; 55(3):239-44. PubMed ID: 2939911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass transport phenomena and models: theoretical concepts.
    Flynn GL; Yalkowsky SH; Roseman TJ
    J Pharm Sci; 1974 Apr; 63(4):479-510. PubMed ID: 4828694
    [No Abstract]   [Full Text] [Related]  

  • 9. Further quantification of the role of internal unstirred layers during the measurement of transport coefficients in giant internodes of Chara by a new stop-flow technique.
    Kim Y; Ye Q; Reinhardt H; Steudle E
    J Exp Bot; 2006; 57(15):4133-44. PubMed ID: 17085756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The theory of transport phenomena in biological membranes. II. The active transport of ions.
    Volkenstein MV; Fishman SN
    Biochim Biophys Acta; 1970 Mar; 203(1):10-6. PubMed ID: 5445669
    [No Abstract]   [Full Text] [Related]  

  • 11. Osmosis in cortical collecting tubules. A theoretical and experimental analysis of the osmotic transient phenomenon.
    Schafer JA; Patlak CS; Andreoli TE
    J Gen Physiol; 1974 Aug; 64(2):201-27. PubMed ID: 4846767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The independence principle. A reconsideration.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):675-80. PubMed ID: 5116583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane transport against the external driving force due to mass transfer-reaction coupling.
    Bailey JE; Luss D
    Proc Natl Acad Sci U S A; 1972 Jun; 69(6):1460-3. PubMed ID: 4504359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions].
    Slezak A; Grzegorczyn S
    Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion transport through pores: transient phenomena.
    Frehland E; Läuger P
    J Theor Biol; 1974 Sep; 47(1):189-207. PubMed ID: 4459581
    [No Abstract]   [Full Text] [Related]  

  • 16. Transport phenomena and ion binding in solutions of sodium polystyrenesulphonate.
    Dolar D; Span J; Isaković S
    Biophys Chem; 1974 Apr; 1(4):312-7. PubMed ID: 4416704
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of aqueous diffusion layer on passive drug diffusion from aqueous cyclodextrin solutions through biological membranes.
    Loftsson T; Konrádsdóttir F; Másson M
    Pharmazie; 2006 Feb; 61(2):83-9. PubMed ID: 16526552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport phenomena in membranes.
    Läuger P
    Angew Chem Int Ed Engl; 1969 Jan; 8(1):42-54. PubMed ID: 4976233
    [No Abstract]   [Full Text] [Related]  

  • 19. Membrane transport of alkyl homologs: role of fluid flow in aqueous diffusion region.
    Shah AC; Nelson KG
    J Pharm Sci; 1980 Feb; 69(2):210-2. PubMed ID: 7359327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes.
    Yoon J; Amy G; Yoon Y
    Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.