BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6378670)

  • 1. Use of 31P and 13C NMR to study enzyme mechanisms.
    Villafranca JJ
    Fed Proc; 1984 Aug; 43(11):2640-7. PubMed ID: 6378670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stringent test for the nucleotide switch mechanism of carbamoyl phosphate synthetase.
    Raushel FM; Mullins LS; Gibson GE
    Biochemistry; 1998 Jul; 37(28):10272-8. PubMed ID: 9665735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slowed enzymatic turnover allows characterization of intermediates by solid-state NMR.
    Studelska DR; McDowell LM; Espe MP; Klug CA; Schaefer J
    Biochemistry; 1997 Dec; 36(50):15555-60. PubMed ID: 9445553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus-31 nuclear magnetic resonance application to positional isotope exchange reactions catalyzed by Escherichia coli carbamoyl-phosphate synthetase: analysis of forward and reverse enzymatic reactions.
    Raushel FM; Villafranca JJ
    Biochemistry; 1980 Jul; 19(14):3170-4. PubMed ID: 6996701
    [No Abstract]   [Full Text] [Related]  

  • 5. A nuclear magnetic resonance study of the topography of binding sites of Escherichia coli carbamoyl-phosphate synthetase.
    Raushel FM; Anderson PM; Villafranca JJ
    Biochemistry; 1983 Apr; 22(8):1872-6. PubMed ID: 6342670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The amidotransferase family of enzymes: molecular machines for the production and delivery of ammonia.
    Raushel FM; Thoden JB; Holden HM
    Biochemistry; 1999 Jun; 38(25):7891-9. PubMed ID: 10387030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the mechanism of nitrogen transfer in Escherichia coli asparagine synthetase by using heavy atom isotope effects.
    Stoker PW; O'Leary MH; Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3024-30. PubMed ID: 8608141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perforation of the tunnel wall in carbamoyl phosphate synthetase derails the passage of ammonia between sequential active sites.
    Kim J; Raushel FM
    Biochemistry; 2004 May; 43(18):5334-40. PubMed ID: 15122899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channeling of substrates and intermediates in enzyme-catalyzed reactions.
    Huang X; Holden HM; Raushel FM
    Annu Rev Biochem; 2001; 70():149-80. PubMed ID: 11395405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminotransferase-glutamate dehydrogenase-carbamyl phosphate synthase-I interactions.
    Fahien LA; Kmiotek EH
    Prog Clin Biol Res; 1984; 144B():77-86. PubMed ID: 6718417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of conserved residues within the carboxy phosphate domain of carbamoyl phosphate synthetase.
    Stapleton MA; Javid-Majd F; Harmon MF; Hanks BA; Grahmann JL; Mullins LS; Raushel FM
    Biochemistry; 1996 Nov; 35(45):14352-61. PubMed ID: 8916922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positional isotope exchange and kinetic experiments with Escherichia coli guanosine-5'-monophosphate synthetase.
    von der Saal W; Crysler CS; Villafranca JJ
    Biochemistry; 1985 Sep; 24(20):5343-50. PubMed ID: 3907701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restricted passage of reaction intermediates through the ammonia tunnel of carbamoyl phosphate synthetase.
    Huang X; Raushel FM
    J Biol Chem; 2000 Aug; 275(34):26233-40. PubMed ID: 10950966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ammonia channeling in Plasmodium falciparum GMP synthetase: investigation by NMR spectroscopy and biochemical assays.
    Bhat JY; Venkatachala R; Singh K; Gupta K; Sarma SP; Balaram H
    Biochemistry; 2011 Apr; 50(16):3346-56. PubMed ID: 21413787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In vitro activation by dithiothreitol and thioredoxins of carbamyl phosphate synthetase-I in rat liver].
    Gautier C; Habechi Z; Balangé AP; Vaillant R
    C R Acad Sci III; 1984; 299(20):849-52. PubMed ID: 6441619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 13C and 31P NMR studies of the pentose phosphate pathway in human erythrocytes.
    Kuchel PW; Berthon HA; Bubb WA; McIntyre LM; Nygh NK; Thorburn DR
    Biomed Biochim Acta; 1990; 49(2-3):S105-10. PubMed ID: 2167075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A convenient gHMQC-based NMR assay for investigating ammonia channeling in glutamine-dependent amidotransferases: studies of Escherichia coli asparagine synthetase B.
    Li KK; Beeson WT; Ghiviriga I; Richards NG
    Biochemistry; 2007 Apr; 46(16):4840-9. PubMed ID: 17397190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 31P NMR detection of oxygen-centered and carbon-centered radical species.
    Argyropoulos DS; Li H; Gaspar AR; Smith K; Lucia LA; Rojas OJ
    Bioorg Med Chem; 2006 Jun; 14(12):4017-28. PubMed ID: 16504514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 18O isotope effect in 13C nuclear magnetic resonance spectroscopy: mechanistic studies on asparaginase from Escherichia coli.
    Röhm KH; Van Etten RL
    Arch Biochem Biophys; 1986 Jan; 244(1):128-36. PubMed ID: 3511841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural constraints on the ternary complex of 5-enolpyruvylshikimate-3-phosphate synthase from rotational-echo double-resonance NMR.
    McDowell LM; Schmidt A; Cohen ER; Studelska DR; Schaefer J
    J Mol Biol; 1996 Feb; 256(1):160-71. PubMed ID: 8609607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.