These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6378891)

  • 1. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.
    Doten RC; Mortlock RP
    J Bacteriol; 1984 Aug; 159(2):730-5. PubMed ID: 6378891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of D- and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora.
    Doten RC; Mortlock RP
    Appl Environ Microbiol; 1985 Jan; 49(1):158-62. PubMed ID: 2983605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Close genetic linkage of the determinants of the ribitol and D-arabitol catabolic pathways in Klebsiella aerogenes.
    Charnetzky WT; Mortlock RP
    J Bacteriol; 1974 Jul; 119(1):176-82. PubMed ID: 4366363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of xylitol-utilizing mutants of Erwinia uredovora.
    Doten RC; Mortlock RP
    J Bacteriol; 1985 Feb; 161(2):529-33. PubMed ID: 2981816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. 3. PHYSICAL AND IMMUNOLOGICAL PROPERTIES OF PENITOL DEHYDROGENASES AND PENTULOKINASES.
    MORTLOCK RP; FOSSITT DD; PETERING DH; WOOD WA
    J Bacteriol; 1965 Jan; 89(1):129-35. PubMed ID: 14255652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-Arabitol catabolic pathway in Klebsiella aerogenes.
    Charnetzky WT; Mortlock RP
    J Bacteriol; 1974 Jul; 119(1):170-5. PubMed ID: 4366026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. METABOLISM OF PENTOSES AND PENTITOLS BY AEROBACTER AEROGENES. II. MECHANISM OF ACQUISITION OF KINASE, ISOMERASE, AND DEHYDROGENASE ACTIVITY.
    MORTLOCK RP; WOOD WA
    J Bacteriol; 1964 Oct; 88(4):845-9. PubMed ID: 14219045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of ribitol-5-phosphate and xylitol-5-phosphate dehydrogenases from strains of Lactobacillus casei.
    Hausman SZ; London J
    J Bacteriol; 1987 Apr; 169(4):1651-5. PubMed ID: 3104310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribitol catabolic pathway in Klebsiella aerogenes.
    Charnetzky WT; Mortlock RP
    J Bacteriol; 1974 Jul; 119(1):162-9. PubMed ID: 4366025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acquisition of ability to utilize Xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli.
    Scangos GA; Reiner AM
    J Bacteriol; 1978 May; 134(2):501-5. PubMed ID: 207668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyol metabolism by Rhizobium trifolii.
    Primrose SB; Ronson CW
    J Bacteriol; 1980 Mar; 141(3):1109-14. PubMed ID: 6767702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.
    Cheng H; Lv J; Wang H; Wang B; Li Z; Deng Z
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3539-52. PubMed ID: 24419799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of an experimentally evolved gene duplication encoding ribitol dehydrogenase in a mutant of Klebsiella aerogenes.
    Neuberger MS; Hartley BS
    J Gen Microbiol; 1981 Feb; 122(2):181-91. PubMed ID: 6275000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2.
    Sukpipat W; Komeda H; Prasertsan P; Asano Y
    J Biosci Bioeng; 2017 Jan; 123(1):20-27. PubMed ID: 27506274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acquisitive evolution of ribitol dehydrogenase in Klebsiella pneumoniae.
    Thompson LW; Krawiec S
    J Bacteriol; 1983 May; 154(2):1027-31. PubMed ID: 6341353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The amino acid sequence of ribitol dehydrogenase-F, a mutant enzyme with improved xylitol dehydrogenase activity.
    Homsi-Brandeburgo MI; Toyama MH; Marangoni S; Ward RJ; Giglio JR; Hartley BS
    J Protein Chem; 1999 May; 18(4):489-95. PubMed ID: 10449046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD⁺-dependent xylitol dehydrogenase (xdhA) and L-arabitol-4-dehydrogenase (ladA) deletion mutants of Aspergillus oryzae for improved xylitol production.
    Mahmud A; Hattori K; Hongwen C; Kitamoto N; Suzuki T; Nakamura K; Takamizawa K
    Biotechnol Lett; 2013 May; 35(5):769-77. PubMed ID: 23436125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the sugar alcohol-producing yeast Pichia anomala.
    Zhang G; Lin Y; He P; Li L; Wang Q; Ma Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):41-8. PubMed ID: 24170383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pentitol metabolism of Rhodobacter sphaeroides Si4: purification and characterization of a ribitol dehydrogenase.
    Kahle C; Schneider KH; Giffhorn F
    J Gen Microbiol; 1992 Jun; 138(6):1277-81. PubMed ID: 1527498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.