BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 6380408)

  • 21. Fluorescent glucagon derivatives. I. Synthesis and characterisation of fluorescent glucagon derivatives.
    Heithier H; Ward LD; Cantrill RC; Klein HW; Im MJ; Pollak G; Freeman B; Schiltz E; Peters R; Helmreich EJ
    Biochim Biophys Acta; 1988 Oct; 971(3):298-306. PubMed ID: 2844291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucagon antagonists. Synthesis and inhibitory properties of Asp3-containing glucagon analogs.
    Andreu D; Merrifield RB
    Eur J Biochem; 1987 May; 164(3):585-90. PubMed ID: 3032623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-function relationships of S-carboxymethyl methionine27 glucagon.
    Cornely KA; Shelter KA; England RD; Horwitz EM; Gurd RS
    Arch Biochem Biophys; 1985 Aug; 240(2):698-704. PubMed ID: 2992382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic peptide antagonists of glucagon.
    Unson CG; Andreu D; Gurzenda EM; Merrifield RB
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4083-7. PubMed ID: 3035568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An improved synthesis of crystalline mammalian glucagon.
    Mojsov S; Merrifield RB
    Eur J Biochem; 1984 Dec; 145(3):601-5. PubMed ID: 6510418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of an essential serine residue in glucagon: implication for an active site triad.
    Unson CG; Merrifield RB
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):454-8. PubMed ID: 8290548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoaffinity labeling of the glucagon receptor with a new glucagon analog.
    Wright DE; Horuk R; Rodbell M
    Eur J Biochem; 1984 May; 141(1):63-7. PubMed ID: 6327311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-function relationships in glucagon: properties of highly purified des-His-1-, monoiodo-, and (des-Asn-28, Thr-29)(homoserine lactone-27)-glucagon.
    Lin MC; Wright DE; Hruby VJ; Rodbell M
    Biochemistry; 1975 Apr; 14(8):1559-63. PubMed ID: 164891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipolytic and adenyl-cyclase-stimulating activity of N alpha-trinitrophenyl glucagon: comparison with other glucagon derivatives modified at the amino terminus.
    Jean-Baptiste E; Rizack MA; Epand RM
    Biosci Rep; 1982 Mar; 2(3):163-7. PubMed ID: 7066487
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New glucagon analogues with conformational restrictions and altered amphiphilicity: effects on binding, adenylate cyclase and glycogenolytic activities.
    Hruby VJ; Gysin B; Trivedi D; Johnson DG
    Life Sci; 1993; 52(10):845-55. PubMed ID: 8445980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A reassessment of structure-function relationships in glucagon. Glucagon1-21 is a full agonist.
    Wright DE; Hruby VJ; Rodbell M
    J Biol Chem; 1978 Sep; 253(18):6338-40. PubMed ID: 210180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and synthesis of glucagon partial agonists and antagonists.
    Gysin B; Trivedi D; Johnson DG; Hruby VJ
    Biochemistry; 1986 Dec; 25(25):8278-84. PubMed ID: 3814583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of potent glucagon antagonists: structure-activity relationship study of glycine at position 4.
    Ahn JM; Medeiros M; Trivedi D; Hruby VJ
    J Pept Res; 2001 Aug; 58(2):151-8. PubMed ID: 11532074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [25-oxindolylalanine]glucagon and [27-methionine sulfoxide]glucagon: preparation, purification, and characterization.
    Coolican SA; Jones BN; England RD; Flanders KC; Condit JD; Gurd RS
    Biochemistry; 1982 Sep; 21(20):4974-81. PubMed ID: 7138842
    [No Abstract]   [Full Text] [Related]  

  • 35. The role of histidine-1 in glucagon action.
    Unson CG; Macdonald D; Merrifield RB
    Arch Biochem Biophys; 1993 Feb; 300(2):747-50. PubMed ID: 8382034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The rapid desensitization of glucagon-stimulated adenylate cyclase is a cyclic AMP-independent process that can be mimicked by hormones which stimulate inositol phospholipid metabolism.
    Murphy GJ; Hruby VJ; Trivedi D; Wakelam MJ; Houslay MD
    Biochem J; 1987 Apr; 243(1):39-46. PubMed ID: 3038085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partial agonism in the glucagon receptor system is a consequence of the two-state rat hepatic receptor.
    Horwitz EM; Wyborski RJ; Gurd RS
    J Biol Chem; 1986 Oct; 261(29):13670-6. PubMed ID: 3020041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucagon amino groups. Evaluation of modifications leading to antagonism and agonism.
    Bregman MD; Trivedi D; Hruby VJ
    J Biol Chem; 1980 Dec; 255(24):11725-31. PubMed ID: 7440567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Importance of the 10-13 region of glucagon for its receptor interactions and activation of adenylate cyclase.
    Krstenansky JL; Trivedi D; Hruby VJ
    Biochemistry; 1986 Jul; 25(13):3833-9. PubMed ID: 3017406
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The glucagon receptor of rat liver plasma membrane can couple to adenylate cyclase without activating it.
    Houslay MD; Metcalfe JC; Warren GB; Hesketh TR; Smith GA
    Biochim Biophys Acta; 1976 Jun; 436(2):489-94. PubMed ID: 179598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.