BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 6380579)

  • 1. 7S RNA, containing 5S ribosomal RNA and the termination stem, is a specific substrate for the two RNA processing enzymes RNase III and RNase E.
    Szeberényi J; Roy MK; Vaidya HC; Apirion D
    Biochemistry; 1984 Jun; 23(13):2952-7. PubMed ID: 6380579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maturation of 5-S rRNA: ribonuclease E cleavages and their dependence on precursor sequences.
    Roy MK; Singh B; Ray BK; Apirion D
    Eur J Biochem; 1983 Mar; 131(1):119-27. PubMed ID: 6339234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ribonuclease-III-processing site near the 5' end of an RNA precursor of bacteriophage T4 and its effect on termination.
    Gurevitz M; Apirion D
    Eur J Biochem; 1985 Mar; 147(3):581-6. PubMed ID: 3979389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNase III cleavage is obligate for maturation but not for function of Escherichia coli pre-23S rRNA.
    King TC; Sirdeshmukh R; Schlessinger D
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):185-8. PubMed ID: 6364133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural requirements for the processing of Escherichia coli 5 S ribosomal RNA by RNase E in vitro.
    Cormack RS; Mackie GA
    J Mol Biol; 1992 Dec; 228(4):1078-90. PubMed ID: 1474579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 7 S RNA: a single site substrate for the RNA processing enzyme ribonuclease E of Escherichia coli.
    Szeberényi J; Roy MK; Apirion D
    Biochim Biophys Acta; 1983 Aug; 740(3):282-90. PubMed ID: 6347257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the mature domain in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA.
    Meyhack B; Pace NR
    Biochemistry; 1978 Dec; 17(26):5804-10. PubMed ID: 103577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutation in an Escherichia coli ribosomal RNA operon that blocks the production of precursor 23 S ribosomal RNA by RNase III in vivo and in vitro.
    Stark MJ; Gourse RL; Jemiolo DK; Dahlberg AE
    J Mol Biol; 1985 Mar; 182(2):205-16. PubMed ID: 2582139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a precursor molecular for the RNA moiety of the processing enzyme RNase P.
    Gurevitz M; Jain SK; Apirion D
    Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4450-4. PubMed ID: 6192433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The catalytic RNA of RNase P from Escherichia coli cleaves Drosophila 2S ribosomal RNA in vitro: a new type of naturally occurring substrate for the ribozyme.
    Hori Y; Tanaka T; Kikuchi Y
    FEBS Lett; 2000 Apr; 472(2-3):187-90. PubMed ID: 10788608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay among processing and degradative enzymes and a precursor ribonucleic acid in the selective maturation and maintenance of ribonucleic acid molecules.
    Gurevitz M; Apirion D
    Biochemistry; 1983 Aug; 22(17):4000-5. PubMed ID: 6351914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Amarasinghe AK; Nicholson AW
    Nucleic Acids Res; 2001 May; 29(9):1915-25. PubMed ID: 11328875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction between RNase III and the Escherichia coli ribosome.
    Allas U; Liiv A; Remme J
    BMC Mol Biol; 2003 Jun; 4():8. PubMed ID: 12814522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precursors to 16S and 23S ribosomal RNA from a ribonuclear III-strain of Escherichia coli contain intact RNase III processing sites.
    Gegenheimer P; Apirion D
    Nucleic Acids Res; 1980 Apr; 8(8):1873-91. PubMed ID: 6253950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA structure-dependent uncoupling of substrate recognition and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Nicholson AW
    Nucleic Acids Res; 2003 May; 31(9):2381-92. PubMed ID: 12711683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precursor nucleotides at the 5' end are not required for processing by RNase E at the 3' end of 5-S rRNA.
    Szeberényi J; Roy MK; Apirion D
    Eur J Biochem; 1983 Nov; 136(2):321-6. PubMed ID: 6194996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of local nucleotide conformation in contrast to sequence by a rRNA processing endonuclease.
    Stahl DA; Meyhack B; Pace NR
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5644-8. PubMed ID: 6777771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The catalytic domain of RNase E shows inherent 3' to 5' directionality in cleavage site selection.
    Feng Y; Vickers TA; Cohen SN
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14746-51. PubMed ID: 12417756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonuclease E is involved in the processing of 5-S rRNA from a number of rRNA transcription units.
    Ray BK; Singh B; Roy MK; Apirion D
    Eur J Biochem; 1982 Jul; 125(2):283-9. PubMed ID: 6749492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different cleavage specificities of RNases III from Rhodobacter capsulatus and Escherichia coli.
    Conrad C; Rauhut R; Klug G
    Nucleic Acids Res; 1998 Oct; 26(19):4446-53. PubMed ID: 9742248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.