These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 638136)

  • 1. Preparation and characterization of phospholipid-depleted chloroplasts.
    Hirayama O; Nomotobori T
    Biochim Biophys Acta; 1978 Apr; 502(1):11-6. PubMed ID: 638136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the sesquiterpene lactone tetraesters thapsigargicin and thapsigargin, from roots of Thapsia garganica L., on isolated spinach chloroplasts.
    Santarius KA; Falsone G; Haddad H
    Toxicon; 1987; 25(4):389-99. PubMed ID: 3617076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophosphorylation and related properties of reaggregated vesicles from spinach photosystem I particles.
    Jaynes JM; Vernon LP; Klein SM
    Biochim Biophys Acta; 1975 Dec; 408(3):240-51. PubMed ID: 1191660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ph indicator phenol red as an artificial electron acceptor in spinach chloroplasts.
    Fiolet JW; De Vlugt FC
    FEBS Lett; 1975 May; 53(3):287-91. PubMed ID: 236917
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of energy transfer reactions in spinach chloroplasts by discarine B, a new peptide alkaloid.
    Andreo CS; Vallejos RH
    FEBS Lett; 1973 Jul; 33(2):201-4. PubMed ID: 4729481
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of Nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination.
    Lei Z; Mingyu S; Chao L; Liang C; Hao H; Xiao W; Xiaoqing L; Fan Y; Fengqing G; Fashui H
    Biol Trace Elem Res; 2007 Oct; 119(1):68-76. PubMed ID: 17914221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influences of calcium deficiency and cerium on the conversion efficiency of light energy of spinach.
    Huang H; Liu X; Qu C; Liu C; Chen L; Hong F
    Biometals; 2008 Oct; 21(5):553-61. PubMed ID: 18404405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of digitonin on photophosphorylation and light-induced H+ uptake in isolated spinach chloroplasts.
    Yagi T; Mukohata Y
    J Biochem; 1980 Aug; 88(2):453-61. PubMed ID: 7419505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of glutaraldehyde on light-induced H+ changes, electron transport, and phosphorylation in pea chloroplasts.
    West J; Packer L
    J Bioenerg; 1970 Oct; 1(4):405-12. PubMed ID: 5005955
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of ferredoxin-catalyzed photosynthetic phosphorylations.
    Arnon DI; Chain RK
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4961-5. PubMed ID: 1746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the pathway of cyclic electron flow in mesophyll chloroplasts of a C4 plant.
    Huber SC; Edwards GE
    Biochim Biophys Acta; 1976 Dec; 449(3):420-33. PubMed ID: 999848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actions of tetraphenylboron on the electron flow in photosystem II of isolated chloroplasts.
    Homann PH
    Biochim Biophys Acta; 1972 Feb; 256(2):336-44. PubMed ID: 4335839
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on the enzyme systems involved in electron and energy transfer in isolated chloroplasts. I. Effect of endogenous phosphate on the photophosphorylation coupled with noncyclic electron transport in intact chloroplasts.
    Frackowiak B; Kaniuga Z
    Biochim Biophys Acta; 1971 Mar; 226(2):360-5. PubMed ID: 4252523
    [No Abstract]   [Full Text] [Related]  

  • 14. [Endogenous photophosphorylation of isolated spinach chloroplasts].
    Miginiac-Maslow M
    Biochim Biophys Acta; 1971 Jun; 234(3):353-9. PubMed ID: 4399018
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on the energy coupling sites of photophosphorylation. 3. The different effects of methylamine and ADP plus phosphate on electron transport through coupling sites I and II in isolated chloroplasts.
    Gould JM; Ort DR
    Biochim Biophys Acta; 1973 Oct; 325(1):157-66. PubMed ID: 4770727
    [No Abstract]   [Full Text] [Related]  

  • 16. Bicarbonate effects on the electron flow in isolated broken chloroplasts.
    Govindjee ; van Rensen JJ
    Biochim Biophys Acta; 1978 Oct; 505(2):183-213. PubMed ID: 363148
    [No Abstract]   [Full Text] [Related]  

  • 17. [Inhibition of electron transport and photophosphorylation in chloroplasts by quercetin].
    Muzafarov EN; Akulova EA; Ivanov BN; Ruzieva RKh
    Mol Biol (Mosk); 1978; 12(1):100-7. PubMed ID: 24802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of manganese on the nuclear magnetic relaxivity of water protons in chloroplast suspensions.
    Robinson HH; Sharp RR; Yocum CF
    Biochem Biophys Res Commun; 1980 Apr; 93(3):755-61. PubMed ID: 6770854
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for a catalytic function of the coupling factor 1 protein reconstituted with chloroplast thylakoid membranes.
    Selman BR; Durbin RD
    Biochim Biophys Acta; 1978 Apr; 502(1):29-37. PubMed ID: 147703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site specific interaction of protons liberated from photosystem II oxidation with a hydrophobic membrane component of the chloroplast membrane.
    Prochaska LJ; Dilley RA
    Biochem Biophys Res Commun; 1978 Jul; 83(2):664-72. PubMed ID: 697849
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.