BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6381488)

  • 1. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects.
    Wang LH; Tu SC
    J Biol Chem; 1984 Sep; 259(17):10682-8. PubMed ID: 6381488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas cepacia 3-hydroxybenzoate 6-hydroxylase: stereochemistry, isotope effects, and kinetic mechanism.
    Yu YM; Wang LH; Tu SC
    Biochemistry; 1987 Feb; 26(4):1105-10. PubMed ID: 3552041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic isotope effects in the oxidation of isotopically labeled NAD(P)H by bacterial flavoprotein monooxygenases.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 Mar; 21(6):1144-51. PubMed ID: 7074071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stereochemistry of NADH utilization by the flavoenzyme monooxygenase orcinol hydroxylase.
    Ryerson CC; Walsh C
    J Biol Chem; 1979 Jun; 254(11):4349-51. PubMed ID: 220242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01.
    Ohta Y; Higgins I; Ribbons DW
    J Biol Chem; 1975 May; 250(10):3814-25. PubMed ID: 1126936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of electron-transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding.
    Einarsdottir GH; Stankovich MT; Tu SC
    Biochemistry; 1988 May; 27(9):3277-85. PubMed ID: 3390431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of salicylate hydroxylase-catalyzed decarboxylation.
    Suzuki K; Katagiri M
    Biochim Biophys Acta; 1981 Feb; 657(2):530-4. PubMed ID: 7213760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the position of monooxygenation in the formation of catechol catalyzed by salicylate hydroxylase.
    Hamzah RY; Tu SC
    J Biol Chem; 1981 Jun; 256(12):6392-4. PubMed ID: 7240212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma-butyrobetaine hydroxylase: stereochemical course of the hydroxylation reaction.
    Englard S; Blanchard JS; Midelfort CF
    Biochemistry; 1985 Feb; 24(5):1110-6. PubMed ID: 4096892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gamma-butyrobetaine hydroxylase: primary and secondary tritium kinetic isotope effects.
    Blanchard JS; Englard S
    Biochemistry; 1983 Dec; 22(25):5922-9. PubMed ID: 6661416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies on the reaction of p-hydroxybenzoate hydroxylase. Agreement of steady state and rapid reaction data.
    Husain M; Massey V
    J Biol Chem; 1979 Jul; 254(14):6657-66. PubMed ID: 36402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Kaidoh T; Itagaki E
    J Biochem; 1991 Feb; 109(2):348-53. PubMed ID: 1864847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deuterium isotope effects in norcamphor metabolism by cytochrome P-450cam: kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate.
    Atkins WM; Sligar SG
    Biochemistry; 1988 Mar; 27(5):1610-6. PubMed ID: 3284586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of 2-hydroxybiphenyl 3-monooxygenase, a flavoprotein from Pseudomonas azelaica HBP1.
    Suske WA; van Berkel WJ; Kohler HP
    J Biol Chem; 1999 Nov; 274(47):33355-65. PubMed ID: 10559214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and mechanistic studies on the reduction of melilotate hydroxylase by reduced pyridine nucleotides.
    Schopfer LM; Massey V
    J Biol Chem; 1979 Nov; 254(21):10634-43. PubMed ID: 227848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and mechanistic studies on the reactions of 2-aminobenzoyl-CoA monooxygenase/reductase.
    Langkau B; Ghisla S
    Eur J Biochem; 1995 Jun; 230(2):686-97. PubMed ID: 7607243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional modification of an arginine residue on salicylate hydroxylase.
    Suzuki K; Ohnishi K
    Biochim Biophys Acta; 1990 Sep; 1040(3):327-36. PubMed ID: 2223838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutathione reductase: comparison of steady-state and rapid reaction primary kinetic isotope effects exhibited by the yeast, spinach, and Escherichia coli enzymes.
    Vanoni MA; Wong KK; Ballou DP; Blanchard JS
    Biochemistry; 1990 Jun; 29(24):5790-6. PubMed ID: 2200516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediate and mechanism of hydroxylation of o-iodophenol by salicylate hydroxylase.
    Suzuki K; Gomi T; Itagaki E
    J Biochem; 1991 May; 109(5):791-7. PubMed ID: 1917904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of intra- and intermolecular tritium isotope effects in the reaction of thymine 7-hydroxylase.
    Holme E
    Biochim Biophys Acta; 1982 Oct; 707(2):259-66. PubMed ID: 6215947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.