BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6381488)

  • 21. Isotope, pulse-chase, stopped-flow, and rapid quench studies on the kinetic mechanism of bovine dihydropteridine reductase.
    Poddar S; Henkin J
    Biochemistry; 1984 Jul; 23(14):3143-8. PubMed ID: 6380584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of 2-hydroxybiphenyl 3-monooxygenase, a novel NADH-dependent, FAD-containing aromatic hydroxylase from Pseudomonas azelaica HBP1.
    Suske WA; Held M; Schmid A; Fleischmann T; Wubbolts MG; Kohler HP
    J Biol Chem; 1997 Sep; 272(39):24257-65. PubMed ID: 9305879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic and mechanistic studies on the oxidation of the melilotate hydroxylase . 2-OH-cinnamate complex by molecular oxygen.
    Schopfer LM; Massey V
    J Biol Chem; 1980 Jun; 255(11):5355-63. PubMed ID: 7372639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate and solvent isotope effects on the fate of the active oxygen species in substrate-modulated reactions of putidamonooxin.
    Twilfer H; Sandfort G; Bernhardt FH
    Eur J Biochem; 2000 Oct; 267(19):5926-34. PubMed ID: 10998052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pseudomonas cepacia 3-hydroxybenzoate 6-hydroxylase: induction, purification, and characterization.
    Wang LH; Hamzah RY; Yu YM; Tu SC
    Biochemistry; 1987 Feb; 26(4):1099-104. PubMed ID: 3567157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of salicylate hydroxylase and the crucial role of lys(163) as its NADH binding site.
    Suzuki K; Asao E; Nakamura Y; Nakamura M; Ohnishi K; Fukuda S
    J Biochem; 2000 Aug; 128(2):293-9. PubMed ID: 10920265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactions of anthranilate hydroxylase with salicylate, a nonhydroxylated substrate analogue. Steady state and rapid reaction kinetics.
    Powlowski J; Massey V; Ballou DP
    J Biol Chem; 1989 Apr; 264(10):5606-12. PubMed ID: 2925623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human erythrocyte glutathione reductase: chemical mechanism and structure of the transition state for hydride transfer.
    Sweet WL; Blanchard JS
    Biochemistry; 1991 Sep; 30(35):8702-9. PubMed ID: 1888731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic isotope effects of peptidylglycine alpha-hydroxylating mono-oxygenase reaction.
    Takahashi K; Onami T; Noguchi M
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):131-7. PubMed ID: 9806894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protonation mechanism and location of rate-determining steps for the Ascaris suum nicotinamide adenine dinucleotide-malic enzyme reaction from isotope effects and pH studies.
    Kiick DM; Harris BG; Cook PF
    Biochemistry; 1986 Jan; 25(1):227-36. PubMed ID: 3513825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isotope effects and intermediates in the reduction of NO by P450(NOR).
    Daiber A; Nauser T; Takaya N; Kudo T; Weber P; Hultschig C; Shoun H; Ullrich V
    J Inorg Biochem; 2002 Feb; 88(3-4):343-52. PubMed ID: 11897349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The reaction kinetics of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1 provide an understanding of the para-hydroxylation enzyme catalytic cycle.
    Sucharitakul J; Tongsook C; Pakotiprapha D; van Berkel WJ; Chaiyen P
    J Biol Chem; 2013 Dec; 288(49):35210-21. PubMed ID: 24129570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic mechanism and nucleotide specificity of NADH peroxidase.
    Stoll VS; Blanchard JS
    Arch Biochem Biophys; 1988 Feb; 260(2):752-62. PubMed ID: 3124762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. I. Kinetic mechanism and pH dependence of kinetic parameters, coenzyme binding and substrate inhibition.
    Alvarez JA; Gelpí JL; Johnsen K; Bernard N; Delcour J; Clarke AR; Holbrook JJ; Cortés A
    Eur J Biochem; 1997 Feb; 244(1):203-12. PubMed ID: 9063465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydroxylation of specifically deuterated limonene enantiomers by cytochrome p450 limonene-6-hydroxylase reveals the mechanism of multiple product formation.
    Wüst M; Croteau RB
    Biochemistry; 2002 Feb; 41(6):1820-7. PubMed ID: 11827526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic investigations on a flavoprotein oxygenase, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Kishore GM; Snell EE
    J Biol Chem; 1981 May; 256(9):4228-33. PubMed ID: 7217080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Apoenzyme of Pseudomonas cepacia salicylate hydroxylase. Preparation, fluorescence property, and nature of flavin binding.
    Wang LH; Tu SC; Lusk RC
    J Biol Chem; 1984 Jan; 259(2):1136-42. PubMed ID: 6693380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
    Patel MP; Blanchard JS
    Biochemistry; 2001 May; 40(17):5119-26. PubMed ID: 11318633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.