These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6381488)

  • 41. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic mechanism of p-hydroxybenzoate hydroxylase with p-mercaptobenzoate as substrate.
    Entsch B; Ballou DP; Husain M; Massey V
    J Biol Chem; 1976 Dec; 251(23):7367-9. PubMed ID: 826528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical mechanism and rate-limiting steps in the reaction catalyzed by Streptococcus faecalis NADH peroxidase.
    Stoll VS; Blanchard JS
    Biochemistry; 1991 Jan; 30(4):942-8. PubMed ID: 1899199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinetic mechanism and intrinsic isotope effects for the peptidylglycine alpha-amidating enzyme reaction.
    Francisco WA; Merkler DJ; Blackburn NJ; Klinman JP
    Biochemistry; 1998 Jun; 37(22):8244-52. PubMed ID: 9609721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Uncoupling and isotope effects in gamma-butyrobetaine hydroxylation.
    Holme E; Lindstedt S; Nordin I
    Biosci Rep; 1984 May; 4(5):433-40. PubMed ID: 6428486
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic and mechanistic studies on the reaction of melilotate hydroxylase with deuterated melilotate.
    Strickland S; Schopfer LM; Massey V
    Biochemistry; 1975 May; 14(10):2230-5. PubMed ID: 1148167
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deduction of kinetic mechanism in multisubstrate enzyme reactions from tritium isotope effects. Application to dopamine beta-hydroxylase.
    Klinman JP; Humphries H; Voet JG
    J Biol Chem; 1980 Dec; 255(24):11648-51. PubMed ID: 7002926
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reduction kinetics of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1.
    Sucharitakul J; Wongnate T; Montersino S; van Berkel WJ; Chaiyen P
    Biochemistry; 2012 May; 51(21):4309-21. PubMed ID: 22559817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic isotope effect and the presteady-state kinetics of the reaction catalyzed by the bacterial formate dehydrogenase.
    Tishkov VI; Galkin AG; Egorov AM
    Biochimie; 1989 Apr; 71(4):551-7. PubMed ID: 2503060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Combined participation of hydroxylase active site residues and effector protein binding in a para to ortho modulation of toluene 4-monooxygenase regiospecificity.
    Mitchell KH; Studts JM; Fox BG
    Biochemistry; 2002 Mar; 41(9):3176-88. PubMed ID: 11863457
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaction of phthalate dioxygenase reductase with NADH and NAD: kinetic and spectral characterization of intermediates.
    Gassner G; Wang L; Batie C; Ballou DP
    Biochemistry; 1994 Oct; 33(40):12184-93. PubMed ID: 7522555
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic mechanism of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase.
    Digits JA; Hedstrom L
    Biochemistry; 1999 Feb; 38(8):2295-306. PubMed ID: 10029522
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular cloning of salicylate hydroxylase genes from Pseudomonas cepacia and Pseudomonas putida.
    Kim Y; Tu SC
    Arch Biochem Biophys; 1989 Feb; 269(1):295-304. PubMed ID: 2916843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic and spectroscopic characterization of 1-naphthol 2-hydroxylase from Pseudomonas sp. strain C5.
    Trivedi VD; Majhi P; Phale PS
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3964-77. PubMed ID: 24599669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steady-state and stopped-flow kinetic measurements of the primary deuterium isotope effect in the reaction catalyzed by p-cresol methylhydroxylase.
    McIntire WS; Hopper DJ; Singer TP
    Biochemistry; 1987 Jun; 26(13):4107-17. PubMed ID: 3651440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Secondary isotope effects and structure-reactivity correlations in the dopamine beta-monooxygenase reaction: evidence for a chemical mechanism.
    Miller SM; Klinman JP
    Biochemistry; 1985 Apr; 24(9):2114-27. PubMed ID: 3995006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dihydropyrimidine dehydrogenase. Kinetic mechanism for reduction of uracil by NADPH.
    Porter DJ; Spector T
    J Biol Chem; 1993 Sep; 268(26):19321-7. PubMed ID: 8366081
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic isotope effect studies on milk xanthine oxidase and on chicken liver xanthine dehydrogenase.
    D'Ardenne SC; Edmondson DE
    Biochemistry; 1990 Sep; 29(38):9046-52. PubMed ID: 2271576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The reductase of p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii requires p-hydroxyphenylacetate for effective catalysis.
    Sucharitakul J; Chaiyen P; Entsch B; Ballou DP
    Biochemistry; 2005 Aug; 44(30):10434-42. PubMed ID: 16042421
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intermediate partitioning in the tartrate dehydrogenase-catalyzed oxidative decarboxylation of D-malate.
    Tipton PA
    Biochemistry; 1993 Mar; 32(11):2822-7. PubMed ID: 8457548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.