These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6381491)

  • 41. The active transport of 2-keto-D-gluconate in vesicles prepared from Pseudomonas purida.
    Agbanyo F; Taylor NF
    Biochem J; 1985 May; 228(1):257-62. PubMed ID: 4004814
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa.
    Hernandez D; Dias FM; Rowe JJ
    Arch Biochem Biophys; 1991 Apr; 286(1):159-63. PubMed ID: 1910283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The electrochemical proton gradient in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):848-54. PubMed ID: 14664
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative measurements of proton motive force and motility in Bacillus subtilis.
    Shioi JI; Matsuura S; Imae Y
    J Bacteriol; 1980 Dec; 144(3):891-7. PubMed ID: 6254950
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proton motive force in Rhodobacter sphaeroides under anaerobic conditions in the dark.
    Hakobyan L; Gabrielyan L; Trchounian A
    Curr Microbiol; 2011 Feb; 62(2):415-9. PubMed ID: 20658137
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacillus cereus electron transport and proton motive force during aerotaxis.
    Laszlo DJ; Niwano M; Goral WW; Taylor BL
    J Bacteriol; 1984 Sep; 159(3):820-4. PubMed ID: 6434511
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potassium ion is required for the generation of pH-dependent membrane potential and delta pH by the marine bacterium Vibrio alginolyticus.
    Tokuda H; Nakamura T; Unemoto T
    Biochemistry; 1981 Jul; 20(14):4198-203. PubMed ID: 7284321
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of chlorate, molybdate, and shikimic acid on Salmonella enterica serovar Typhimurium in aerobic and anaerobic cultures.
    Oliver CE; Beier RC; Hume ME; Horrocks SM; Casey TA; Caton JS; Nisbet DJ; Smith DJ; Krueger NA; Anderson RC
    Anaerobe; 2010 Apr; 16(2):106-13. PubMed ID: 19524056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport.
    Komor E; Tanner W
    Eur J Biochem; 1976 Nov; 70(1):197-204. PubMed ID: 12943
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P; Krämer R; Unden G
    Eur J Biochem; 1994 Jun; 222(2):605-14. PubMed ID: 8020497
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy dependence of lipopolysaccharide translocation in Salmonella typhimurium.
    Marino PA; Phan KA; Osborn MJ
    J Biol Chem; 1985 Dec; 260(28):14965-70. PubMed ID: 3905787
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrochemical proton gradient of Brevibacterium linens and its relationship to phenylalanine transport.
    Boyaval P; Moreira E; Desmazeaud MJ
    Ann Microbiol (Paris); 1984; 135B(1):91-9. PubMed ID: 6095716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simultaneous determination of membrane potential and pH gradient by photodiode array spectroscopy.
    Konishi T; Murakami N; Hatano Y; Nakazato K
    Biochim Biophys Acta; 1986 Nov; 862(2):278-84. PubMed ID: 3778892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proton pump-generated electrochemical gradients in rat liver multivesicular bodies. Quantitation and effects of chloride.
    Van Dyke RW
    J Biol Chem; 1988 Feb; 263(6):2603-11. PubMed ID: 2963813
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel regulatory loci controlling oxygen- and pH-regulated gene expression in Salmonella typhimurium.
    Aliabadi Z; Park YK; Slonczewski JL; Foster JW
    J Bacteriol; 1988 Feb; 170(2):842-51. PubMed ID: 3276666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW; Patel L; Rottenberg H; Kaback HR
    Biochemistry; 1980 Jan; 19(1):1-9. PubMed ID: 6986161
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effects of partial and selective reduction in the components of the proton-motive force on lactose uptake in Escherichia coli.
    Ahmed S; Booth IR
    Biochem J; 1981 Dec; 200(3):583-9. PubMed ID: 6282254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient.
    Carty SE; Johnson RG; Scarpa A
    J Biol Chem; 1981 Nov; 256(21):11244-50. PubMed ID: 6457050
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioenergetic consequences of catabolic shifts by Lactobacillus plantarum in response to shifts in environmental oxygen and pH in chemostat cultures.
    Tseng CP; Tsau JL; Montville TJ
    J Bacteriol; 1991 Jul; 173(14):4411-6. PubMed ID: 2066338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maintenance of proton motive force by Streptococcus mutans and Streptococcus sobrinus during growth in continuous culture.
    Hamilton IR
    Oral Microbiol Immunol; 1990 Oct; 5(5):280-7. PubMed ID: 2098703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.