These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Alkaline phosphatase. 31P NMR probes of the mechanism. Gettins P; Metzler M; Coleman JE J Biol Chem; 1985 Mar; 260(5):2875-83. PubMed ID: 3882702 [TBL] [Abstract][Full Text] [Related]
8. Determination by cadmium-113 nuclear magnetic resonance of the structural basis for metal ion dependent anticooperativity in alkaline phosphatase. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4031-43. PubMed ID: 6996715 [TBL] [Abstract][Full Text] [Related]
9. Structure and mechanism of alkaline phosphatase. Coleman JE Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473 [TBL] [Abstract][Full Text] [Related]
10. 31P NMR of alkaline phosphatase. Saturation transfer and metal-phosphorus coupling. Otvos JD; Alger JR; Coleman JE; Armitage IM J Biol Chem; 1979 Mar; 254(6):1778-80. PubMed ID: 33981 [TBL] [Abstract][Full Text] [Related]
11. 113Cd nuclear magnetic resonance (NMR) study of the inhibitory effect of methylvinylether/maleic acid (PVM/MA) copolymer on the alkaline phosphatase of Escherichia coli. Afflitto J; Smith KA; Patel M; Esposito A; Jensen E; Gaffar A Pharm Res; 1991 Nov; 8(11):1384-8. PubMed ID: 1798674 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the properties of the multiple metal binding sites in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Otvos JD; Armitage IM Biochemistry; 1980 Aug; 19(17):4021-30. PubMed ID: 6996714 [TBL] [Abstract][Full Text] [Related]
13. Binding of cadmium(II) and zinc(II) to human and dog serum albumins. An equilibrium dialysis and 113Cd-NMR study. Goumakos W; Laussac JP; Sarkar B Biochem Cell Biol; 1991 Dec; 69(12):809-20. PubMed ID: 1818586 [TBL] [Abstract][Full Text] [Related]
14. 19-F NMR studies of the binding of a fluorine-labeled phosphonate ion to E. coli alkaline phosphatase. Lilja H; Csopak H; Lindman B; Fölsch G Biochim Biophys Acta; 1975 Mar; 384(1):277-82. PubMed ID: 236775 [TBL] [Abstract][Full Text] [Related]
15. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects. Coleman JE; Nakamura K; Chlebowski JF J Biol Chem; 1983 Jan; 258(1):386-95. PubMed ID: 6336751 [TBL] [Abstract][Full Text] [Related]
16. 31P nuclear magnetic resonance study of alkaline phosphatase: the role of inorganic phosphate in limiting the enzyme turnover rate at alkaline pH. Hull WE; Halford SE; Gutfreund H; Sykes BD Biochemistry; 1976 Apr; 15(7):1547-61. PubMed ID: 4092 [TBL] [Abstract][Full Text] [Related]
17. 1H, 113Cd, and 31P NMR of osteocalcin (bovine gamma-carboxyglutamic acid containing protein). Prigodich RV; O'Connor T; Coleman JE Biochemistry; 1985 Oct; 24(22):6291-8. PubMed ID: 3878727 [TBL] [Abstract][Full Text] [Related]
18. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster. Pan T; Coleman JE Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2077-81. PubMed ID: 2107541 [TBL] [Abstract][Full Text] [Related]
19. Allosteric interactions between metal ion and phosphate at the active sites of alkaline phosphatase as determined by 31P NMR and 113Cd NMR. Chlebowski JF; Armitage IM; Coleman JE J Biol Chem; 1977 Oct; 252(20):7053-61. PubMed ID: 20443 [No Abstract] [Full Text] [Related]
20. 113Cd NMR studies on metal-thiolate cluster formation in rabbit Cd(II)-metallothionein: evidence for a pH dependence. Good M; Hollenstein R; Sadler PJ; Vasák M Biochemistry; 1988 Sep; 27(18):7163-6. PubMed ID: 3196709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]