These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 638187)

  • 21. Domain motion in actin observed by fluorescence resonance energy transfer.
    Miki M; Kouyama T
    Biochemistry; 1994 Aug; 33(33):10171-7. PubMed ID: 8060983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The kinetics of effector binding to phosphofructokinase. The allosteric conformational transition induced by 1,N6-ethenoadenosine triphosphate.
    Roberts D; Kellett GL
    Biochem J; 1979 Nov; 183(2):349-60. PubMed ID: 160791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence energy transfer between probes on actin and probes on myosin.
    Dos Remedios CG; Cooke R
    Biochim Biophys Acta; 1984 Jul; 788(2):193-205. PubMed ID: 6743667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural mapping of rabbit muscle phosphofructokinase. Distance between the adenosine cyclic 3',5'-phosphate binding site and a reactive sulfhydryl group.
    Craig DW; Hammes GG
    Biochemistry; 1980 Jan; 19(2):330-4. PubMed ID: 6243478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The distance separating Cys-10 from the high-affinity metal binding site in actin.
    Miki M; Barden JA; dos Remedios CG
    Biochem Int; 1986 Jun; 12(6):807-13. PubMed ID: 3741444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence energy transfer between cysteine 199 and cysteine 343: evidence for MgATP-dependent conformational change in the catalytic subunit of cAMP-dependent protein kinase.
    First EA; Johnson DA; Taylor SS
    Biochemistry; 1989 Apr; 28(8):3606-13. PubMed ID: 2787168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on the spatial arrangement of muscle thin filament proteins using fluorescence energy transfer.
    Lin TI; Dowben RM
    J Biol Chem; 1983 Apr; 258(8):5142-50. PubMed ID: 6682103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence resonance energy transfer between points on tropomyosin and actin in skeletal muscle thin filaments: does tropomyosin move?
    Miki M; Miura T; Sano K; Kimura H; Kondo H; Ishida H; Maéda Y
    J Biochem; 1998 Jun; 123(6):1104-11. PubMed ID: 9603999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The distances separating Tyr-69 from the high-affinity nucleotide and metal binding sites in actin.
    Barden JA; Miki M
    Biochem Int; 1986 Feb; 12(2):321-9. PubMed ID: 3964288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.
    Root DD; Reisler E
    Protein Sci; 1992 Aug; 1(8):1014-22. PubMed ID: 1304380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of actin assembly by fluorescence energy transfer.
    Taylor DL; Reidler J; Spudich JA; Stryer L
    J Cell Biol; 1981 May; 89(2):362-7. PubMed ID: 6894758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of mouse twinfilin-1 on the structure and dynamics of monomeric actin.
    Takács-Kollár V; Nyitrai M; Hild G
    Biochim Biophys Acta; 2016 Jul; 1864(7):840-6. PubMed ID: 27079635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Association kinetics and binding constants of nucleoside triphosphates with G-actin.
    Waechter F; Engel J
    Eur J Biochem; 1977 Apr; 74(2):227-32. PubMed ID: 404146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of hybridization for distance measurement by fluorescence energy transfer in oligomeric proteins: distance between two functional sites in aspartase.
    Murase S; Kawata Y; Yumoto N
    Biochem Biophys Res Commun; 1993 Sep; 195(3):1159-64. PubMed ID: 8216244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The kinetics of the exchange of G-actin-bound 1: N6-ethenoadenosine 5'-triphosphate with ATP as followed by fluorescence.
    Waechter F; Engel J
    Eur J Biochem; 1975 Sep; 57(2):453-9. PubMed ID: 240724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amphoteric charge distribution at the enzymatic site of 1,N6-ethenoadenosine triphosphate-binding heavy meromyosin determined by dynamic fluorescence quenching.
    Miyata H; Asai H
    J Biochem; 1981 Jul; 90(1):133-9. PubMed ID: 7026547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The kinetics of effector binding to phosphofructokinase. The binding of Mg2+-1,N6-ethenoadenosine triphosphate to the catalytic site.
    Roberts D; Kellett GL
    Biochem J; 1980 Sep; 189(3):561-7. PubMed ID: 6260083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exchange of ADP, ATP and 1: N6-ethenoadenosine 5'-triphosphate at G-actin. Equilibrium and kinetics.
    Neidl C; Engel J
    Eur J Biochem; 1979 Nov; 101(1):163-9. PubMed ID: 510301
    [No Abstract]   [Full Text] [Related]  

  • 39. The environment of the high-affinity cation binding site on actin and the separation between cation and ATP sites as revealed by proton NMR and fluorescence spectroscopy.
    Barden JA; dos Remedios CG
    J Biochem; 1984 Sep; 96(3):913-21. PubMed ID: 6501270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of the distance change between cysteine-457 and the nucleotide binding site when sodium pump changes conformation from E1 to E2 by fluorescence energy transfer measurements.
    Lin SH; Faller LD
    Biochemistry; 1996 Jun; 35(25):8419-28. PubMed ID: 8679600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.