These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6383344)

  • 41. Amino acid sequence of the catalytic subunit of aspartate transcarbamoylase from Escherichia coli.
    Konigsberg WH; Henderson L
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2467-71. PubMed ID: 6341995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 1H NMR studies on the catalytic subunit of aspartate transcarbamoylase.
    Cohen RE; Takama M; Schachman HK
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11881-5. PubMed ID: 1465412
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.
    Powers VM; Yang YR; Fogli MJ; Schachman HK
    Protein Sci; 1993 Jun; 2(6):1001-12. PubMed ID: 8318885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbamoyl phosphate compartmentation in Neurospora: histochemical localization of aspartate and ornithine transcarbamoylases.
    Bernhardt SA; Davis RH
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1868-72. PubMed ID: 4114857
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K-12.
    Houghton JE; Bencini DA; O'Donovan GA; Wild JR
    Proc Natl Acad Sci U S A; 1984 Aug; 81(15):4864-8. PubMed ID: 6379651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of L-asparagine and N-phosphonacetyl-L-asparagine to investigate the linkage of catalysis and homotropic cooperativity in E. coli aspartate transcarbomoylase.
    Cardia JP; Eldo J; Xia J; O'Day EM; Tsuruta H; Gryncel KR; Kantrowitz ER
    Proteins; 2008 May; 71(3):1088-96. PubMed ID: 18004787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enzyme memory. Effect of glucose 6-phosphate and temperature on the molecular transition of wheat-germ hexokinase LI.
    Meunier JC; Buc J; Ricard J
    Eur J Biochem; 1979 Jul; 97(2):573-83. PubMed ID: 467432
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Changes in the hydrogen exchange kinetics of Escherichia coli aspartate transcarbamylase produced by effector binding and subunit association.
    Lennick M; Allewell NM
    Proc Natl Acad Sci U S A; 1981 Nov; 78(11):6759-63. PubMed ID: 7031660
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wheat-germ aspartate transcarbamylase: reversible ligand-dependent aggregation behaviour in vitro.
    Grayson JE; Yon RJ
    Biochem Soc Trans; 1978; 6(1):197-200. PubMed ID: 640159
    [No Abstract]   [Full Text] [Related]  

  • 50. Versatility of mixed-function adsorbents in biospecific protein desorption: accidental affinity and an improved purification of aspartate transcarbamoylase from wheat germ.
    Yon RJ
    Anal Biochem; 1981 May; 113(2):219-28. PubMed ID: 7283131
    [No Abstract]   [Full Text] [Related]  

  • 51. Evidence for ligand- and pH-dependent conformational changes in liposome-associated mannose 6-phosphate receptor.
    Westcott KR; Searles RP; Rome LH
    J Biol Chem; 1987 May; 262(13):6101-7. PubMed ID: 2952647
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Allosteric properties of wheat-germ aspartate transcarbamoylase.
    Yon RJ
    Biochem J; 1971 Sep; 124(2):10P-11P. PubMed ID: 5158470
    [No Abstract]   [Full Text] [Related]  

  • 53. End-product inhibition of aspartate carbamoyltransferase from wheat germ.
    Yon RJ
    Biochem J; 1971 Jan; 121(1):18P-19P. PubMed ID: 5116534
    [No Abstract]   [Full Text] [Related]  

  • 54. Functional consequences of ligand-dependent conformational changes in trypsin-solubilized and in membrane particle constrained-acetylcholinesterase.
    Pattison S; Bernhard S
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3613-7. PubMed ID: 278976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetic implications of the occurrence of several relaxations in the conformational transition of mnemonical enzymes.
    Ricard J; Soulié JM; Buc J; Bidaud M
    Eur J Biochem; 1986 Sep; 159(2):247-54. PubMed ID: 3758062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of compactional pressure on a wheat germ lipase preparation.
    Zarrintan MH; Teng CD; Groves MJ
    Pharm Res; 1990 Mar; 7(3):247-50. PubMed ID: 2339097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbamoyl phosphate and its substitutes for the uracil synthesis in origins of life scenarios.
    Ter-Ovanessian LMP; Rigaud B; Mezzetti A; Lambert JF; Maurel MC
    Sci Rep; 2021 Sep; 11(1):19356. PubMed ID: 34588537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanisms of feedback inhibition and sequential firing of active sites in plant aspartate transcarbamoylase.
    Bellin L; Del Caño-Ochoa F; Velázquez-Campoy A; Möhlmann T; Ramón-Maiques S
    Nat Commun; 2021 Feb; 12(1):947. PubMed ID: 33574254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purine and pyrimidine nucleotide synthesis and metabolism.
    Moffatt BA; Ashihara H
    Arabidopsis Book; 2002; 1():e0018. PubMed ID: 22303196
    [No Abstract]   [Full Text] [Related]  

  • 60. Molecular cloning and characterization of the pyrB1 and pyrB2 genes encoding aspartate transcarbamoylase in pea (Pisum sativum L.).
    Williamson CL; Slocum RD
    Plant Physiol; 1994 May; 105(1):377-84. PubMed ID: 8029359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.