These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6383358)

  • 41. Bioconversion of heptanal to heptanol by Saccharomyces cerevisiae.
    Verma S; Ray AK; De BK
    Yeast; 2010 May; 27(5):269-75. PubMed ID: 20120041
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [H+-K+-exchange in anaerobically grown Escherichia coli bacteria during use of various sugars as exogenous energy sources].
    Trchunian AA; Ogandzhanian ES
    Biofizika; 1998; 43(1):82-6. PubMed ID: 9567180
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetics of sulfate uptake by yeast.
    Roomans GM; Kuypers GA; Theuvenet AP; Borst-Pauwels GW
    Biochim Biophys Acta; 1979 Feb; 551(1):197-206. PubMed ID: 34436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of K+ on the membrane functions of an alkalophilic Bacillus.
    Koyama N; Wakabayashi K; Nosoh Y
    Biochim Biophys Acta; 1987 Apr; 898(3):293-8. PubMed ID: 3567183
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.
    van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The absorption of protons with alpha-methyl glucoside and alpha-thioethyl glucoside by the yeast N.C.Y.C. 240. Evidence against the phosphorylation hypothesis.
    Brocklehurst R; Gardner D; Eddy AA
    Biochem J; 1977 Mar; 162(3):591-9. PubMed ID: 326255
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Involvement of endocytosis in catabolite inactivation of the transport systems in Saccharomyces cerevisiae.
    Riballo E; Lagunas R
    Folia Microbiol (Praha); 1994; 39(6):542. PubMed ID: 8550017
    [No Abstract]   [Full Text] [Related]  

  • 48. The role of intracellular pH in the regulation of cation exchanges in yeast.
    Ryan JP; Ryan H
    Biochem J; 1972 Jun; 128(1):139-46. PubMed ID: 4563763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression.
    Salema-Oom M; De Sousa HR; Assunção M; Gonçalves P; Spencer-Martins I
    J Appl Microbiol; 2011 Jan; 110(1):364-74. PubMed ID: 21091593
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fermentation of high concentrations of maltose by Saccharomyces cerevisiae is limited by the COMPASS methylation complex.
    Houghton-Larsen J; Brandt A
    Appl Environ Microbiol; 2006 Nov; 72(11):7176-82. PubMed ID: 16980427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The hexose-proton cotransport system of chlorella. pH-dependent change in Km values and translocation constants of the uptake system.
    Komor E; Tanner W
    J Gen Physiol; 1974 Nov; 64(5):568-81. PubMed ID: 4443792
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of riboflavin into yeast cells.
    Perl M; Kearney EB; Singer TP
    J Biol Chem; 1976 Jun; 251(11):3221-8. PubMed ID: 6447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proton stoichiometry of the overexpressed uracil symport of the yeast Saccharomyces cerevisiae.
    Eddy AA; Hopkins P
    Biochem J; 1998 Nov; 336 ( Pt 1)(Pt 1):125-30. PubMed ID: 9806893
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uptake of L-lysine by a double mutant of Saccharomyces cerevisiae.
    García JC; Kotyk A
    Folia Microbiol (Praha); 1988; 33(4):285-91. PubMed ID: 3141253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis of cell wall polysaccharide from maltose by a strain of Saccharomyces cerevisiae incapable of maltose fermentation.
    Okada H; Tabata S; Fujita T; Hizukuri S
    Biochim Biophys Acta; 1973 Mar; 304(1):20-31. PubMed ID: 4573202
    [No Abstract]   [Full Text] [Related]  

  • 56. Inactivation of the thiamine transport system in Saccharomyces cerevisiae with O-bromoacetylthiamine.
    Nishimura H; Sempuku K; Nosaka K; Iwashima A
    Arch Biochem Biophys; 1988 Oct; 266(1):248-53. PubMed ID: 3052299
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Turnover of the K+ transport system in Saccharomyces cerevisiae.
    Benito B; Riballo E; Lagunas R
    FEBS Lett; 1991 Dec; 294(1-2):35-7. PubMed ID: 1835935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toxicity and accumulation of thallium in bacteria and yeast.
    Norris P; Man WK; Hughes MN; Kelly DP
    Arch Microbiol; 1976 Nov; 110(23):279-86. PubMed ID: 828024
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Uptake of sucrose by Saccharomyces cerevisiae.
    Santos E; Rodriguez L; Elorza MV; Sentandreu R
    Arch Biochem Biophys; 1982 Jul; 216(2):652-60. PubMed ID: 7051981
    [No Abstract]   [Full Text] [Related]  

  • 60. Effect of NaCl on kinetics of D-glucosamine uptake in yeasts differing in halotolerance.
    Lindman B
    Antonie Van Leeuwenhoek; 1981; 47(4):297-306. PubMed ID: 7044305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.