These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6383364)

  • 1. Modelling the glucose-insulin system as a basis for the artificial beta cell.
    Fischer U; Salzsieder E; Jutzi E; Albrecht G; Freyse EJ
    Biomed Biochim Acta; 1984; 43(5):597-605. PubMed ID: 6383364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of individually adapted control parameters for an artificial beta cell.
    Salzsieder E; Albrecht G; Jutzi E; Fischer U
    Biomed Biochim Acta; 1984; 43(5):585-96. PubMed ID: 6383363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Not the artificial beta cell algorithms but their parameter values are important in automated glucose control of insulin-dependent diabetes.
    Fischer U; Jutzi E; Albrecht G; Abel P; Salzsieder E; Freyse EJ; Detscheff W; Lemke K
    Trans Am Soc Artif Intern Organs; 1983; 29():488-91. PubMed ID: 6673274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of wearable-type artificial endocrine pancreas and its usefulness in glycaemic control of human diabetes mellitus.
    Shichiri M; Kawamori R; Hakui N; Asakawa N; Yamasaki Y; Abe H
    Biomed Biochim Acta; 1984; 43(5):561-8. PubMed ID: 6477542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line adaptive algorithm with glucose prediction capacity for subcutaneous closed loop control of glucose: evaluation under fasting conditions in patients with Type 1 diabetes.
    Schaller HC; Schaupp L; Bodenlenz M; Wilinska ME; Chassin LJ; Wach P; Vering T; Hovorka R; Pieber TR
    Diabet Med; 2006 Jan; 23(1):90-3. PubMed ID: 16409572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell.
    Abel P; Müller A; Fischer U
    Biomed Biochim Acta; 1984; 43(5):577-84. PubMed ID: 6477543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracer kinetic studies of glucose and alanine metabolism in diabetic dogs on the artificial beta cell.
    Freyse EJ; Fischer U; Albrecht G
    Biomed Biochim Acta; 1984; 43(5):607-14. PubMed ID: 6477544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attempts at perfect normalization of glucose tolerance test of severe diabetics by artificial beta cell.
    Kerner W; Thum C; Tamás G; Beischer W; Clemens AH; Pfeiffer EF
    Horm Metab Res; 1976 Jul; 8(4):256-61. PubMed ID: 783030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the clinical importance of the constants used in the algorithm of an artificial B-cell (Biostator).
    Ratzmann KP; Jutzi E; Albrecht G
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(5):270-6. PubMed ID: 6359740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term application of wearable artificial endocrine pancreas--closed-loop intravenous vs subcutaneous insulin infusion.
    Shichiri M; Kawamori R; Goriya Y; Yamasaki Y; Nomura M; Asakawa N; Kubota M; Kamada T
    Life Support Syst; 1985; 3 Suppl 1():583-7. PubMed ID: 3916624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologic modeling of the intravenous glucose tolerance test in type 2 diabetes: a new approach to the insulin compartment.
    Ward GM; Walters JM; Barton J; Alford FP; Boston RC
    Metabolism; 2001 May; 50(5):512-9. PubMed ID: 11319711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strict glycemic control in diabetic dogs with closed-loop intraperitoneal insulin infusion algorithm designed for an artificial endocrine pancreas.
    Matsuo Y; Shimoda S; Sakakida M; Nishida K; Sekigami T; Ichimori S; Ichinose K; Shichiri M; Araki E
    J Artif Organs; 2003; 6(1):55-63. PubMed ID: 14598126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of a glucose appearance function from foods using deconvolution.
    Yates TL; Fletcher LR
    IMA J Math Appl Med Biol; 2000 Jun; 17(2):169-84. PubMed ID: 10994512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback control dynamics for glucose controlled insulin infusion system.
    Clemens AH
    Med Prog Technol; 1979 Jun; 6(3):91-8. PubMed ID: 481365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of an artificial beta cell system and its validation in depancreatized dogs: the physiological restoration of blood glucose homeostasis.
    Goriya Y; Kawamori R; Shichiri M; Abe H
    Med Prog Technol; 1979 Jun; 6(3):99-108. PubMed ID: 481366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural network modeling and control of type 1 diabetes mellitus.
    El-Jabali AK
    Bioprocess Biosyst Eng; 2005 Apr; 27(2):75-9. PubMed ID: 15578231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuzzy-based controller for glucose regulation in type-1 diabetic patients by subcutaneous route.
    Campos-Delgado DU; Hernández-Ordoñez M; Femat R; Gordillo-Moscoso A
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2201-10. PubMed ID: 17073325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacodynamic effects of oral contraceptive steroids on biochemical markers for arterial thrombosis. Studies in non-diabetic women and in women with insulin-dependent diabetes mellitus.
    Petersen KR
    Dan Med Bull; 2002 Feb; 49(1):43-60. PubMed ID: 11894723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedforward-feedback multiple predictive controllers for glucose regulation in type 1 diabetes.
    Abu-Rmileh A; Garcia-Gabin W
    Comput Methods Programs Biomed; 2010 Jul; 99(1):113-23. PubMed ID: 20430467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fuzzy logic based closed-loop control system for blood glucose level regulation in diabetics.
    Ibbini MS; Masadeh MA
    J Med Eng Technol; 2005; 29(2):64-9. PubMed ID: 15804854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.