These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 6383387)
1. Amino acid transport: its role in cell division and growth of Saccharomyces cerevisiae cells. Dudani AK; Prasad R Biochem Int; 1983 Jul; 7(1):15-22. PubMed ID: 6383387 [TBL] [Abstract][Full Text] [Related]
2. Status of calcium influx in cell cycle of S. cerevisiae. Anand S; Prasad R Biochem Int; 1987 May; 14(5):963-70. PubMed ID: 3331516 [TBL] [Abstract][Full Text] [Related]
3. Carbon and energetic uncoupling are associated with block of division at different stages of the cell cycle in several cdc mutants of Saccharomyces cerevisiae. Aon MA; Mónaco ME; Cortassa S Exp Cell Res; 1995 Mar; 217(1):42-51. PubMed ID: 7867719 [TBL] [Abstract][Full Text] [Related]
4. Autophagic death after cell cycle arrest at the restrictive temperature in temperature-sensitive cell division cycle and secretory mutants of the yeast Saccharomyces cerevisiae. Motizuki M; Yokota S; Tsurugi K Eur J Cell Biol; 1995 Nov; 68(3):275-87. PubMed ID: 8603680 [TBL] [Abstract][Full Text] [Related]
5. Stress resistance of yeast cells is largely independent of cell cycle phase. Elliott B; Futcher B Yeast; 1993 Jan; 9(1):33-42. PubMed ID: 8442385 [TBL] [Abstract][Full Text] [Related]
6. Carbon and energy uncoupling associated with cell cycle arrest of cdc mutants of Saccharomyces cerevisiae may be linked to glucose-induced catabolite repression. Mónaco ME; Valdecantos PA; Aon MA Exp Cell Res; 1995 Mar; 217(1):52-6. PubMed ID: 7867720 [TBL] [Abstract][Full Text] [Related]
7. Alterations in fatty acyl composition can selectively affect amino acid transport in Saccharomyces cerevisiae. Mishra P; Prasad R Biochem Int; 1987 Sep; 15(3):499-508. PubMed ID: 3122760 [TBL] [Abstract][Full Text] [Related]
8. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures. Aon MA; Cortassa S Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331 [TBL] [Abstract][Full Text] [Related]
9. Construction of phosphatidylethanolamine-less strain of Saccharomyces cerevisiae. Effect on amino acid transport. Robl I; Grassl R; Tanner W; Opekarová M Yeast; 2001 Feb; 18(3):251-60. PubMed ID: 11180458 [TBL] [Abstract][Full Text] [Related]
10. GABA uptake in a Saccharomyces cerevisiae strain. Bermúdez Moretti M; Correa García S; Ramos EH; Batlle A Cell Mol Biol (Noisy-le-grand); 1995 Sep; 41(6):843-9. PubMed ID: 8535178 [TBL] [Abstract][Full Text] [Related]
11. N, N' (p-Xylylidene)-bis-aminoguanidine (2HCI) resistant mutants in Saccharomyces cerevisiae and their relation to the amino acid transport system. Witkowska R; Ułaszewski S; Lachowicz TM Acta Microbiol Pol; 1980; 29(1):57-63. PubMed ID: 6155054 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of amino acid transport in Saccharomyces cerevisiae cells: Part I--By using respiratory sufficient (rho+) & respiratory deficient (rho) mutants. Verma RS; Prasad R Indian J Biochem Biophys; 1983 Apr; 20(2):104-9. PubMed ID: 6368370 [No Abstract] [Full Text] [Related]
13. A temperature-sensitive dcw1 mutant of Saccharomyces cerevisiae is cell cycle arrested with small buds which have aberrant cell walls. Kitagaki H; Ito K; Shimoi H Eukaryot Cell; 2004 Oct; 3(5):1297-306. PubMed ID: 15470258 [TBL] [Abstract][Full Text] [Related]
14. Absence of derepression of amino acids transport in Candida. Verma RS; Prasad R Biochem Int; 1983 Dec; 7(6):707-17. PubMed ID: 6385985 [TBL] [Abstract][Full Text] [Related]
15. Yeast cells can enter a quiescent state through G1, S, G2, or M phase of the cell cycle. Wei W; Nurse P; Broek D Cancer Res; 1993 Apr; 53(8):1867-70. PubMed ID: 8467507 [TBL] [Abstract][Full Text] [Related]
16. Physiological role of D-amino acid-N-acetyltransferase of Saccharomyces cerevisiae: detoxification of D-amino acids. Yow GY; Uo T; Yoshimura T; Esaki N Arch Microbiol; 2006 Mar; 185(1):39-46. PubMed ID: 16362288 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a Saccharomyces cerevisiae thermosensitive lytic mutant leads to the identification of a new allele of the NUD1 gene. Alexandar I; San Segundo P; Venkov P; del Rey F; Vázquez de Aldana CR Int J Biochem Cell Biol; 2004 Nov; 36(11):2196-213. PubMed ID: 15313466 [TBL] [Abstract][Full Text] [Related]
18. Cell cycle and growth regulation in RAS2 mutant cells of Saccharomyces cerevisiae. Baroni MD; Marconi G; Monti P; Alberghina L Ital J Biochem; 1993; 42(6):373-87. PubMed ID: 8144346 [TBL] [Abstract][Full Text] [Related]
19. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Danaie P; Altmann M; Hall MN; Trachsel H; Helliwell SB Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):135-41. PubMed ID: 10229668 [TBL] [Abstract][Full Text] [Related]
20. Rise in intracellular pH is concurrent with 'start' progression of Saccharomyces cerevisiae. Anand S; Prasad R J Gen Microbiol; 1989 Aug; 135(8):2173-9. PubMed ID: 2699326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]