These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 6383390)
1. Sialoglycolipids in Trypanosoma cruzi. Confalonieri AN; Martin NF; Zingales B; Colli W; de Lederkremer RM Biochem Int; 1983 Aug; 7(2):215-22. PubMed ID: 6383390 [TBL] [Abstract][Full Text] [Related]
2. In vivo incorporation of palmitic acid and galactose in glycolipids of Trypanosoma cruzi epimastigotes. de Lederkremer RM; Zingales B; Confalonieri AN; Couto AS; Martin NF; Colli W Biochem Int; 1985 Jan; 10(1):79-88. PubMed ID: 3885952 [TBL] [Abstract][Full Text] [Related]
3. Sialoglycoproteins and sialoglycolipids contribute to the negative surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi. Souto-Padrón T; de Souza W Biochim Biophys Acta; 1985 Mar; 814(1):163-9. PubMed ID: 3884045 [TBL] [Abstract][Full Text] [Related]
4. Glycolipid components of epimastigote forms of Trypanosoma cruzi. Barreto-Bergter E; Vermelho AB; Hogge L; Gorin PA Comp Biochem Physiol B; 1985; 80(3):543-5. PubMed ID: 3891212 [TBL] [Abstract][Full Text] [Related]
5. [Isolation and comparative analysis of glycolipid fractions in bifidobacteria]. Novik GI; Astapovich NI; Grzegorzewicz A; Gamian A Mikrobiologiia; 2005; 74(6):772-80. PubMed ID: 16400987 [TBL] [Abstract][Full Text] [Related]
6. Sialic acid in a complex oligosaccharide chain of the Tc-85 surface glycoprotein from the trypomastigote stage of Trypanosoma cruzi. Couto AS; Katzin AM; Colli W; de Lederkremer RM Mol Biochem Parasitol; 1987 Nov; 26(1-2):145-53. PubMed ID: 3323904 [TBL] [Abstract][Full Text] [Related]
7. Direct sialic acid transfer from a protein donor to glycolipids of trypomastigote forms of Trypanosoma cruzi. Zingales B; Carniol C; de Lederkremer RM; Colli W Mol Biochem Parasitol; 1987 Nov; 26(1-2):135-44. PubMed ID: 2448618 [TBL] [Abstract][Full Text] [Related]
8. A lipopeptidophosphoglycan from Trypanosoma cruzi (epimastigota). Isolation, purification and carbohydrate composition. De Lederkremer RM; Alves MJ; Fonseca GC; Colli W Biochim Biophys Acta; 1976 Aug; 444(1):85-96. PubMed ID: 782545 [TBL] [Abstract][Full Text] [Related]
9. Trypanosoma cruzi: incorporation of [3H]-palmitic acid and [3H]-galactose into components shed by trypomastigotes. Couto AS; Uhrig ML; Agustí R; Befumo MF; Zingales B; Colli W; de Lederkremer RM Biochem Int; 1991 Aug; 24(6):991-1002. PubMed ID: 1781795 [TBL] [Abstract][Full Text] [Related]
10. Determination of N-acetyl- and N-glycolylneuraminic acids in gangliosides by combination of neuraminidase hydrolysis and fluorometric high-performance liquid chromatography using a GM3 derivative as an internal standard. Hikita T; Tadano-Aritomi K; Iida-Tanaka N; Toyoda H; Suzuki A; Toida T; Imanari T; Abe T; Yanagawa Y; Ishizuka I Anal Biochem; 2000 Jun; 281(2):193-201. PubMed ID: 10870835 [TBL] [Abstract][Full Text] [Related]
11. Transfer of modified sialic acids by Trypanosoma cruzi trans-sialidase for attachment of functional groups to oligosaccharide. Lee KB; Lee YC Anal Biochem; 1994 Feb; 216(2):358-64. PubMed ID: 8179190 [TBL] [Abstract][Full Text] [Related]
12. Structural identification of a major mitogenic lipid derived from Bacillus subtilis as a glycerophosphoglycolipid. Li Y; Gray GR Biochemistry; 1996 Dec; 35(50):16299-304. PubMed ID: 8973204 [TBL] [Abstract][Full Text] [Related]
13. Structural features of the lipopeptidophosphoglycan from Trypanosoma cruzi common with the glycophosphatidylinositol anchors. de Lederkremer RM; Lima C; Ramirez MI; Casal OL Eur J Biochem; 1990 Sep; 192(2):337-45. PubMed ID: 2145155 [TBL] [Abstract][Full Text] [Related]
14. Separation of Galfbeta1-->XGlcNAc and Galpbeta1-->XGlcNAc (X = 3, 4, and 6) as the alditols by high-pH anion-exchange chromatography and thin-layer chromatography: characterization of mucins from Trypanosoma cruzi. Salto ML; Gallo-Rodriguez C; Lima C; de Lederkremer RM Anal Biochem; 2000 Mar; 279(1):79-84. PubMed ID: 10683233 [TBL] [Abstract][Full Text] [Related]
15. Differentiation between Trypanosoma cruzi and Trypanosoma rangeli on the basis of their sialic acid content. Schottelius J Tropenmed Parasitol; 1984 Sep; 35(3):160-2. PubMed ID: 6388083 [TBL] [Abstract][Full Text] [Related]
16. Trypanosoma cruzi: nitrogenous-base-containing phosphatides in trypomastigote forms--isolation and chemical analysis. Uhrig ML; Couto AS; Alves MJ; Colli W; de Lederkremer RM Exp Parasitol; 1997 Sep; 87(1):8-19. PubMed ID: 9287953 [TBL] [Abstract][Full Text] [Related]
18. Glycolipid and protein profiles in trypanosomatids. Branquinha MH; Bergter EB; de Meirelles MN; Vermelho AB Parasitol Res; 1994; 80(4):336-41. PubMed ID: 8073022 [TBL] [Abstract][Full Text] [Related]
19. The occurrence of N-acetyl- and N-glycoloylneuraminic acid in Trypanosoma cruzi. Schauer R; Reuter G; Mühlpfordt H; Andrade AF; Pereira ME Hoppe Seylers Z Physiol Chem; 1983 Aug; 364(8):1053-7. PubMed ID: 6354906 [TBL] [Abstract][Full Text] [Related]
20. [Phospholipids and other lipid components of Trypanosoma cruzi. Comparative study in Tulahuén, ES and Brazil strains]. Bronia DI; Montamat EE; Aeberhard EE; Segura EL Medicina (B Aires); 1978; 38(3):255-8. PubMed ID: 357886 [No Abstract] [Full Text] [Related] [Next] [New Search]